Chevron Left
Retour à Exploration analytique de données

Avis et commentaires pour d'étudiants pour Exploration analytique de données par Université Johns-Hopkins

4.7
étoiles
5,419 évaluations
781 avis

À propos du cours

This course covers the essential exploratory techniques for summarizing data. These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover in detail the plotting systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the common multivariate statistical techniques used to visualize high-dimensional data....

Meilleurs avis

CC

Jul 29, 2016

This is the second course I have taken from Roger Peng and both were outstanding. I have a strong math background, but not much of a background in stats, but this course was very approachable for me.

Y

Sep 24, 2017

Very good course! It provide me the foundation in learning how to plot and interpret data. This will definitely strengthen my "R programming" to generate publication type figure for my genomics data!

Filtrer par :

526 - 550 sur 752 Avis pour Exploration analytique de données

par Robert J C

Jul 25, 2019

Good.

par Adán H

Oct 05, 2017

Good!

par Rafael L G

Jun 06, 2017

great

par Zhao M

Nov 01, 2016

good.

par Marco A P N

Jun 02, 2016

Great

par Yusuf S

May 20, 2016

great

par Pitak P

Oct 04, 2019

Good

par Razib A K

Dec 18, 2018

good

par Ganapathi N K

May 01, 2018

Nice

par Jay B

Aug 15, 2017

good

par Saurabh G

Apr 14, 2017

nice

par Larry G

Feb 07, 2017

Nice

par 刘治

Jul 18, 2016

good

par Prakash M S G C

May 24, 2016

Good

par 朱荣荣

Mar 09, 2016

good

par 丁雪松

Jun 16, 2020

💯

par Amit K R

Nov 21, 2017

ok

par Ganesh P

Nov 29, 2017

V

par Wei W

Sep 11, 2017

C

par Balinda S

Dec 11, 2016

T

par Phillip K

Mar 20, 2018

Good stuff just as I have come to expect from this University and the courses that are part of this Signature Track.

A great deal of the lectures and work on assignments/quizzes/projects was learning and using the various plotting systems in R. Certainly this is important, but to put it into perspective, I spent four hours creating six plots for the final project, when I was able to use Tableau Desktop to create all six plots in under five minutes.

So formally learning the data exploration techniques was good, but expect much of this course to be about learning the R plotting systems.

That said, there is a point in this course (and the first time for all the courses to this point) where the topic suddenly got very, very technical. When clustering techniques were introduced it felt as if you were turned on your head as the focus suddenly went from various ways of plotting data in R to being neck deep in the explanation of clustering techniques that require a great degree of Linear Algebra knowledge.

Don't panic though. While there are questions in the guided assignments that are difficult, you don't really need to recall all of your Linear Algebra courses from college to pass this course. After all, R "has a package for that."

par Ruggero B

Feb 29, 2016

My congratulations to all those people who worked to create this course although I have to pick up something I've found a bit annoying:

1- there were two video where the audio were nearly unintelligible

2- I would link the link proposed by the video to be possible to be clicked

3- Some exposition imperfection (even if they make these video more "real and human")

4- Since quiz are not so difficult to be evaluated automatically I found it a bit annoying to notice them locked by not-purchsing, even if I understand there have to be something which would make the customer to purchase.

I've found the swirl experience great although a bit annoying sometimes but I've no clue on how to possibly improve it so.

Keep up with this great work!

Bye

par Jamison R C

Jul 04, 2018

You'll learn some cool things like K-means clustering and creating dendrograms, as well as dimension-reduction techniques. The assignments are very easy if you have basic familiarity with R's base plotting system and the "ggplot2" package. I will say I'm very happy with this course in the overviews of R's major plotting systems (though no "ggvis" package), as well as working with color palettes. However, I wish there was more hands-on or peer-graded practice with K-means, heatmaps, dendrograms, and dimension reduction techniques like Singular Value Decomposition (SVD). If these are new to you (they were to me!), you'll certainly walk away from the course more knowledgeable.

par Miguel C

Apr 15, 2020

Once again the teacher was really knowledgeable and engaging. The content was really helpful for my career. The part about clustering was challenging but still manageable. The pacing was good, not too slow (so not boring) but also not too fast (so still easy to understand). The case studies, especially the one about activity measured by smartphones, was one of the best parts of the course.

I didn't particularly enjoy some of the swirl practices. I found some of them to be very very similar (if not the same) as the examples in the lectures, so I only enjoyed the few where there was some new content.

Overall I really enjoyed the course and I would recommend it :)

par Julien N

Jul 13, 2018

A good start for data analysis, this course covers the basics of plotting with the three most common packages (base R, lattice, and ggplot2).I liked the assignment which difficulty is nicely measured (it is not just applying the videos concept, you have to look around the web to find tools and documentation about what functions to use).On a less positive aspects:- I am not sure this course was the best place to introduce kmean and PCA sections...- a lot of content is outdated (wrong links, old R command parameters, ...), look likes a quick freshup update would not do harm given the number of people that keeps registering...