À propos de ce cours
95,581 consultations récentes

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.

Niveau débutant

Approx. 37 heures pour terminer

Recommandé : 4 weeks, 6-8 hours/week...

Anglais

Sous-titres : Anglais

Compétences que vous acquerrez

Simple AlgorithmPython ProgrammingProblem SolvingComputation

100 % en ligne

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.

Niveau débutant

Approx. 37 heures pour terminer

Recommandé : 4 weeks, 6-8 hours/week...

Anglais

Sous-titres : Anglais

Programme du cours : ce que vous apprendrez dans ce cours

Semaine
1
3 heures pour terminer

Pillars of Computational Thinking

6 vidéos (Total 44 min), 6 quiz
6 vidéos
1.2 Decomposition6 min
1.3 Pattern Recognition5 min
1.4 Data Representation and Abstraction7 min
1.5 Algorithms8 min
1.6 Case Studies11 min
4 exercices pour s'entraîner
1.2 Decomposition10 min
1.3 Pattern Recognition10 min
1.4 Data Representation and Abstraction15 min
1.5 Algorithms15 min
Semaine
2
4 heures pour terminer

Expressing and Analyzing Algorithms

7 vidéos (Total 69 min), 10 quiz
7 vidéos
2.2 Linear Search5 min
2.3 Algorithmic Complexity8 min
2.4 Binary Search11 min
2.5 Brute Force Algorithms13 min
2.6 Greedy Algorithms9 min
2.7 Case Studies12 min
6 exercices pour s'entraîner
2.1 Finding the Largest Value10 min
2.2 Linear Search10 min
2.3 Algorithmic Complexity10 min
2.4 Binary Search10 min
2.5 Brute Force Algorithms15 min
2.6 Greedy Algorithms10 min
Semaine
3
4 heures pour terminer

Fundamental Operations of a Modern Computer

6 vidéos (Total 46 min), 10 quiz
6 vidéos
3.2 Intro to the von Neumann Architecture8 min
3.3 von Neumann Architecture Data6 min
3.4 von Neumann Architecture Control Flow5 min
3.5 Expressing Algorithms in Pseudocode8 min
3.6 Case Studies10 min
5 exercices pour s'entraîner
3.1 A History of the Computer10 min
3.2 Intro to the von Neumann Architecture10 min
3.3 von Neumann Architecture Data10 min
3.4 von Neumann Architecture Control Flow10 min
3.5 Expressing Algorithms in Pseudocode10 min
Semaine
4
7 heures pour terminer

Applied Computational Thinking Using Python

9 vidéos (Total 91 min), 12 lectures, 12 quiz
9 vidéos
4.2 Variables13 min
4.3 Conditional Statements8 min
4.4 Lists7 min
4.5 Iteration14 min
4.6 Functions10 min
4.7 Classes and Objects9 min
4.8 Case Studies11 min
4.9 Course Conclusion8 min
12 lectures
Programming on the Coursera Platform10 min
Python Playground
Variables Programming Activity20 min
Solution to Variables Programming Activity10 min
Conditionals Programming Activity20 min
Solution to Conditionals Programming Activity10 min
Solution to Lists Programming Assignment5 min
Solution to Loops Programming Assignment10 min
Solution to Functions Programming Assignment10 min
Solution to Challenge Programming Assignment10 min
Solution to Classes and Objects Programming Assignment10 min
Solution to Project Part 410 min
12 exercices pour s'entraîner
4.2 Variables10 min
4.3 Conditional Statements5 min
4.4 Lists10 min
Lists Programming Assignment15 min
4.5 Iteration10 min
Loops Programming Assignment30 min
4.6 Functions10 min
Functions Programming Assignment20 min
(Optional) Challenge Programming Assignment20 min
4.7 Classes and Objects10 min
Classes and Objects Programming Assignment20 min
Project Part 4: Implementing the Solution in Python25 min
4.8
136 avisChevron Right

42%

ont commencé une nouvelle carrière après avoir terminé ce cours

32%

ont bénéficié d'un avantage concret dans leur carrières grâce à ce cours

Meilleurs avis pour Computational Thinking for Problem Solving

par JDec 19th 2018

Excellent course for beginners with enough depth, programming and computational theory to increase their computer science knowledge to a higher level. It builds a good foundation of how computers work

par AWFeb 4th 2019

The course is very well-designed and it helped me develop understand how to apply computational thinking in solving various types of problems as well as acquire basic skills of programming in Python.

Enseignants

Avatar

Susan Davidson

Weiss Professor
Computer & Information Science
Avatar

Chris Murphy

Associate Professor of Practice
Computer & Information Science

À propos de Université de Pennsylvanie

The University of Pennsylvania (commonly referred to as Penn) is a private university, located in Philadelphia, Pennsylvania, United States. A member of the Ivy League, Penn is the fourth-oldest institution of higher education in the United States, and considers itself to be the first university in the United States with both undergraduate and graduate studies. ...

Foire Aux Questions

  • Une fois que vous êtes inscrit(e) pour un Certificat, vous pouvez accéder à toutes les vidéos de cours, et à tous les quiz et exercices de programmation (le cas échéant). Vous pouvez soumettre des devoirs à examiner par vos pairs et en examiner vous-même uniquement après le début de votre session. Si vous préférez explorer le cours sans l'acheter, vous ne serez peut-être pas en mesure d'accéder à certains devoirs.

  • Lorsque vous achetez un Certificat, vous bénéficiez d'un accès à tout le contenu du cours, y compris les devoirs notés. Lorsque vous avez terminé et réussi le cours, votre Certificat électronique est ajouté à votre page Accomplissements. À partir de cette page, vous pouvez imprimer votre Certificat ou l'ajouter à votre profil LinkedIn. Si vous souhaitez seulement lire et visualiser le contenu du cours, vous pouvez accéder gratuitement au cours en tant qu'auditeur libre.

  • No, definitely not! This course is intended for anyone who has an interest in approaching problems more systematically, developing more efficient solutions, and understanding how computers can be used in the problem solving process. No prior computer science or programming experience is required.

  • Some parts of the course assume familiarity with basic algebra, trigonometry, mathematical functions, exponents, and logarithms. If you don’t remember those concepts or never learned them, don’t worry! As long as you’re comfortable with multiplication, you should still be able to follow along. For everything else, we’ll provide links to references that you can use as a refresher or as supplemental material.

  • This course will help you discover whether you have an aptitude for computational thinking. This is a useful predictor of success in the Master of Computer and Information Technology program at the University of Pennsylvania, which is offered both on-campus and online. In this course you will learn from MCIT instructors and become familiar with the quality and style of MCIT Online courses.

    If you have a bachelor's degree and are interested in learning more about computational thinking, we encourage you to apply to MCIT On-campus (http://www.cis.upenn.edu/prospective-students/graduate/mcit.php) or MCIT Online (https://onlinelearning.seas.upenn.edu/mcit/). Please mention that you have completed this course in the application.

  • Use these links to learn more about MCIT:

    MCIT On-campus: http://www.cis.upenn.edu/prospective-students/graduate/mcit.php

    MCIT Online: https://onlinelearning.seas.upenn.edu/mcit/

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.