À propos de ce cours
4.8
481 notes
147 avis
100% online

100% online

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.
Niveau intermédiaire

Niveau intermédiaire

Heures pour terminer

Approx. 35 heures pour terminer

Recommandé : 8 weeks of study, 6-12 hours/week...
Langues disponibles

Anglais

Sous-titres : Anglais...

Compétences que vous acquerrez

Power SeriesComplex AnalysisMappingOptimizing Compiler
100% online

100% online

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Dates limites flexibles

Dates limites flexibles

Réinitialisez les dates limites selon votre disponibilité.
Niveau intermédiaire

Niveau intermédiaire

Heures pour terminer

Approx. 35 heures pour terminer

Recommandé : 8 weeks of study, 6-12 hours/week...
Langues disponibles

Anglais

Sous-titres : Anglais...

Programme du cours : ce que vous apprendrez dans ce cours

Semaine
1
Heures pour terminer
5 heures pour terminer

Introduction to Complex Numbers

We’ll begin this module by briefly learning about the history of complex numbers: When and why were they invented? In particular, we’ll look at the rather surprising fact that the original need for complex numbers did not arise from the study of quadratic equations (such as solving the equation z^2+1 = 0), but rather from the study of cubic equations! Next we’ll cover some algebra and geometry in the complex plane to learn how to compute with and visualize complex numbers. To that end we’ll also learn about the polar representation of complex numbers, which will lend itself nicely to finding roots of complex numbers. We’ll finish this module by looking at some topology in the complex plane....
Reading
5 vidéos (Total 119 min), 5 lectures, 2 quiz
Video5 vidéos
Algebra and Geometry in the Complex Plane30 min
Polar Representation of Complex Numbers32 min
Roots of Complex Numbers14 min
Topology in the Plane21 min
Reading5 lectures
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Quiz1 exercice pour s'entraîner
Module 1 Homework10 min
Semaine
2
Heures pour terminer
3 heures pour terminer

Complex Functions and Iteration

Complex analysis is the study of functions that live in the complex plane, that is, functions that have complex arguments and complex outputs. The main goal of this module is to familiarize ourselves with such functions. Ultimately we’ll want to study their smoothness properties (that is, we’ll want to differentiate complex functions of complex variables), and we therefore need to understand sequences of complex numbers as well as limits in the complex plane. We’ll use quadratic polynomials as an example in the study of complex functions and take an excursion into the beautiful field of complex dynamics by looking at the iterates of certain quadratic polynomials. This allows us to learn about the basics of the construction of Julia sets of quadratic polynomials. You'll learn everything you need to know to create your own beautiful fractal images, if you so desire. We’ll finish this module by defining and looking at the Mandelbrot set and one of the biggest outstanding conjectures in the field of complex dynamics....
Reading
5 vidéos (Total 123 min), 5 lectures, 1 quiz
Video5 vidéos
Sequences and Limits of Complex Numbers30 min
Iteration of Quadratic Polynomials, Julia Sets25 min
How to Find Julia Sets20 min
The Mandelbrot Set18 min
Reading5 lectures
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Quiz1 exercice pour s'entraîner
Module 2 Homework10 min
Semaine
3
Heures pour terminer
5 heures pour terminer

Analytic Functions

When studying functions we are often interested in their local behavior, more specifically, in how functions change as their argument changes. This leads us to studying complex differentiation – a more powerful concept than that which we learned in calculus. We’ll begin this module by reviewing some facts from calculus and then learn about complex differentiation and the Cauchy-Riemann equations in order to meet the main players: analytic functions. These are functions that possess complex derivatives in lots of places; a fact, which endows them with some of the most beautiful properties mathematics has to offer. We’ll finish this module with the study of some functions that are complex differentiable, such as the complex exponential function and complex trigonometric functions. These functions agree with their well-known real-valued counterparts on the real axis!...
Reading
5 vidéos (Total 135 min), 5 lectures, 2 quiz
Video5 vidéos
The Cauchy-Riemann Equations29 min
The Complex Exponential Function24 min
Complex Trigonometric Functions21 min
First Properties of Analytic Functions25 min
Reading5 lectures
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Quiz1 exercice pour s'entraîner
Module 3 Homework10 min
Semaine
4
Heures pour terminer
3 heures pour terminer

Conformal Mappings

We’ll begin this module by studying inverse functions of analytic functions such as the complex logarithm (inverse of the exponential) and complex roots (inverses of power) functions. In order to possess a (local) inverse, an analytic function needs to have a non-zero derivative, and we’ll discover the powerful fact that at any such place an analytic function preserves angles between curves and is therefore a conformal mapping! We'll spend two lectures talking about very special conformal mappings, namely Möbius transformations; these are some of the most fundamental mappings in geometric analysis. We'll finish this module with the famous and stunning Riemann mapping theorem. This theorem allows us to study arbitrary simply connected sub-regions of the complex plane by transporting geometry and complex analysis from the unit disk to those domains via conformal mappings, the existence of which is guaranteed via the Riemann Mapping Theorem....
Reading
5 vidéos (Total 113 min), 5 lectures, 1 quiz
Video5 vidéos
Conformal Mappings26 min
Möbius transformations, Part 127 min
Möbius Transformations, Part 217 min
The Riemann Mapping Theorem15 min
Reading5 lectures
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Lecture Slides10 min
Quiz1 exercice pour s'entraîner
Module 4 Homework10 min
4.8
Avantage de carrière

83%

a bénéficié d'un avantage concret dans sa carrière grâce à ce cours

Meilleurs avis

par RKApr 6th 2018

The lectures were very easy to follow and the exercises fitted these lectures well. This course was not always very rigorous, but a great introduction to complex analysis nevertheless. Thank you!

par NSJun 25th 2018

The prof makes it easy to understand yet fascinating. I enjoyed video checkpoints, quizzes and peer reviewed assignments. This course encourages you to think and discover new things.

Enseignant

Avatar

Dr. Petra Bonfert-Taylor

Former Professor of Mathematics at Wesleyan University / Professor of Engineering at Thayer School of Engineering at Dartmouth

À propos de Wesleyan University

At Wesleyan, distinguished scholar-teachers work closely with students, taking advantage of fluidity among disciplines to explore the world with a variety of tools. The university seeks to build a diverse, energetic community of students, faculty, and staff who think critically and creatively and who value independence of mind and generosity of spirit. ...

Foire Aux Questions

  • Une fois que vous êtes inscrit(e) pour un Certificat, vous pouvez accéder à toutes les vidéos de cours, et à tous les quiz et exercices de programmation (le cas échéant). Vous pouvez soumettre des devoirs à examiner par vos pairs et en examiner vous-même uniquement après le début de votre session. Si vous préférez explorer le cours sans l'acheter, vous ne serez peut-être pas en mesure d'accéder à certains devoirs.

  • Lorsque vous achetez un Certificat, vous bénéficiez d'un accès à tout le contenu du cours, y compris les devoirs notés. Lorsque vous avez terminé et réussi le cours, votre Certificat électronique est ajouté à votre page Accomplissements. À partir de cette page, vous pouvez imprimer votre Certificat ou l'ajouter à votre profil LinkedIn. Si vous souhaitez seulement lire et visualiser le contenu du cours, vous pouvez accéder gratuitement au cours en tant qu'auditeur libre.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.