About this Spécialisation
Cours en ligne à 100 %

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible

Planning flexible

Définissez et respectez des dates limites flexibles.
Niveau débutant

Niveau débutant

Heures pour terminer

Approx. 9 mois pour terminer

6 heures/semaine recommandées
Langues disponibles

Anglais

Sous-titres : Anglais, Chinois (simplifié), Arabe...

Compétences que vous acquerrez

StatisticsStatistical InferenceR ProgrammingQualitative Research
Cours en ligne à 100 %

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible

Planning flexible

Définissez et respectez des dates limites flexibles.
Niveau débutant

Niveau débutant

Heures pour terminer

Approx. 9 mois pour terminer

6 heures/semaine recommandées
Langues disponibles

Anglais

Sous-titres : Anglais, Chinois (simplifié), Arabe...

How the Spécialisation Works

Suivez les cours

Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.

Projet pratique

Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.

Obtenir un Certificat

Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

how it works

Cette Spécialisation compte 5 cours

Cours1

Quantitative Methods

4.7
944 notes
312 avis
Discover the principles of solid scientific methods in the behavioral and social sciences. Join us and learn to separate sloppy science from solid research! This course will cover the fundamental principles of science, some history and philosophy of science, research designs, measurement, sampling and ethics. The course is comparable to a university level introductory course on quantitative research methods in the social sciences, but has a strong focus on research integrity. We will use examples from sociology, political sciences, educational sciences, communication sciences and psychology....
Cours2

Qualitative Research Methods

4.5
506 notes
164 avis
In this course you will be introduced to the basic ideas behind the qualitative research in social science. You will learn about data collection, description, analysis and interpretation in qualitative research. Qualitative research often involves an iterative process. We will focus on the ingredients required for this process: data collection and analysis. You won't learn how to use qualitative methods by just watching video's, so we put much stress on collecting data through observation and interviewing and on analysing and interpreting the collected data in other assignments. Obviously, the most important concepts in qualitative research will be discussed, just as we will discuss quality criteria, good practices, ethics, writing some methods of analysis, and mixing methods. We hope to take away some prejudice, and enthuse many students for qualitative research....
Cours3

Basic Statistics

4.7
1,859 notes
500 avis
Understanding statistics is essential to understand research in the social and behavioral sciences. In this course you will learn the basics of statistics; not just how to calculate them, but also how to evaluate them. This course will also prepare you for the next course in the specialization - the course Inferential Statistics. In the first part of the course we will discuss methods of descriptive statistics. You will learn what cases and variables are and how you can compute measures of central tendency (mean, median and mode) and dispersion (standard deviation and variance). Next, we discuss how to assess relationships between variables, and we introduce the concepts correlation and regression. The second part of the course is concerned with the basics of probability: calculating probabilities, probability distributions and sampling distributions. You need to know about these things in order to understand how inferential statistics work. The third part of the course consists of an introduction to methods of inferential statistics - methods that help us decide whether the patterns we see in our data are strong enough to draw conclusions about the underlying population we are interested in. We will discuss confidence intervals and significance tests. You will not only learn about all these statistical concepts, you will also be trained to calculate and generate these statistics yourself using freely available statistical software....
Cours4

Inferential Statistics

4.4
269 notes
75 avis
Inferential statistics are concerned with making inferences based on relations found in the sample, to relations in the population. Inferential statistics help us decide, for example, whether the differences between groups that we see in our data are strong enough to provide support for our hypothesis that group differences exist in general, in the entire population. We will start by considering the basic principles of significance testing: the sampling and test statistic distribution, p-value, significance level, power and type I and type II errors. Then we will consider a large number of statistical tests and techniques that help us make inferences for different types of data and different types of research designs. For each individual statistical test we will consider how it works, for what data and design it is appropriate and how results should be interpreted. You will also learn how to perform these tests using freely available software. For those who are already familiar with statistical testing: We will look at z-tests for 1 and 2 proportions, McNemar's test for dependent proportions, t-tests for 1 mean (paired differences) and 2 means, the Chi-square test for independence, Fisher’s exact test, simple regression (linear and exponential) and multiple regression (linear and logistic), one way and factorial analysis of variance, and non-parametric tests (Wilcoxon, Kruskal-Wallis, sign test, signed-rank test, runs test)....

Enseignants

Avatar

Annemarie Zand Scholten

Assistant Professor
Economics and Business
Avatar

Gerben Moerman

Dr.
Faculty of Social and Behavioural Sciences
Avatar

Matthijs Rooduijn

Dr.
Department of Political Science
Avatar

Emiel van Loon

Assistant Professor
Institute for Biodiversity and Ecosystem Dynamics

À propos de University of Amsterdam

A modern university with a rich history, the University of Amsterdam (UvA) traces its roots back to 1632, when the Golden Age school Athenaeum Illustre was established to train students in trade and philosophy. Today, with more than 30,000 students, 5,000 staff and 285 study programmes (Bachelor's and Master's), many of which are taught in English, and a budget of more than 600 million euros, it is one of the largest comprehensive universities in Europe. It is a member of the League of European Research Universities and also maintains intensive contact with other leading research universities around the world....

Foire Aux Questions

  • Oui ! Pour commencer, cliquez sur la carte du cours qui vous intéresse et inscrivez-vous. Vous pouvez vous inscrire et terminer le cours pour obtenir un Certificat partageable, ou vous pouvez accéder au cours en auditeur libre afin d'en visualiser gratuitement le contenu. Si vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Visitez votre tableau de bord d'étudiant(e) pour suivre vos progrès.

  • Ce cours est entièrement en ligne : vous n'avez donc pas besoin de vous présenter physiquement dans une salle de classe. Vous pouvez accéder à vos vidéos de cours, lectures et devoirs en tout temps et en tout lieu, par l'intermédiaire du Web ou de votre appareil mobile.

  • Cette Spécialisation n'est pas associée à des crédits universitaires, mais certaines universités peuvent décider d'accepter des Certificats de Spécialisation pour des crédits. Vérifiez-le auprès de votre établissement pour en savoir plus.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 10 months.

  • Each course in the Specialization is offered on demand, and may be taken at any time.

  • A basic understanding of scientific principles and research methods may be helpful, but is not required. Only very basic math skills are required, you should be able to perform: addition, subtraction, multiplication, calculation of square, square root, exponents and logarithms.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • At the end of this Specialization, you will be performing your own statistical analyses using the programming language R, with no prior knowledge of programming. Learners who complete the Research Methods and Statistics for Social Science Specialization will learn more about scientific rigor and integrity. You’ll have the methods, statistics and research skills required to complete a typical Masters program in the Social Sciences or the Johns Hopkins Data Science Specialization, and also be ready for more advanced courses on big data or multivariate statistics.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.