À propos de ce Spécialisation
41,777 consultations récentes

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau intermédiaire

Approx. 8 mois pour terminer

7 heures/semaine recommandées

Russe

Sous-titres : Russe

Compétences que vous acquerrez

StatisticsPython ProgrammingMachine LearningData Visualization (DataViz)

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau intermédiaire

Approx. 8 mois pour terminer

7 heures/semaine recommandées

Russe

Sous-titres : Russe

Fonctionnement du Spécialisation

Suivez les cours

Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.

Projet pratique

Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.

Obtenir un Certificat

Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

how it works

Cette Spécialisation compte 6 cours

Cours1

Математика и Python для анализа данных

4.8
4,081 notes
679 avis

Анализ данных и машинное обучение существенно опираются на результаты из математического анализа, линейной алгебры, методов оптимизации, теории вероятностей. Без фундаментальных знаний по этим наукам невозможно понимать, как устроены методы анализа данных. Задача этого курса — сформировать такой фундамент. Мы обойдёмся без сложных формул и доказательств и сделаем упор на интерпретации и понимании смысла математических понятий и объектов. Для успешного применения методов анализа данных нужно уметь программировать. Фактическим стандартом для этого в наши дни является язык Python. В данном курсе мы предлагаем познакомиться с его синтаксисом, а также научиться работать с его основными библиотеками, полезными для анализа данных, например, NumPy, SciPy, Matplotlib и Pandas. Задания и видео разработаны на Python 2.

...
Cours2

Обучение на размеченных данных

4.8
1,881 notes
256 avis

Обучение на размеченных данных или обучение с учителем – это наиболее распространенный класс задач машинного обучения. К нему относятся те задачи, где нужно научиться предсказывать некоторую величину для любого объекта, имея конечное число примеров. Это может быть предсказание уровня пробок на участке дороги, определение возраста пользователя по его действиям в интернете, предсказание цены, по которой будет куплена подержанная машина. В этом курсе вы научитесь формулировать и, конечно, решать такие задачи. В центре нашего внимания будут успешно применяемые на практике алгоритмы классификации и регрессии: линейные модели, нейронные сети, решающие деревья и так далее. Особый акцент мы сделаем на такой мощной технике как построение композиций, которая позволяет существенно повысить качество отдельных алгоритмов и широко используется при решении прикладных задач. В частности, мы узнаем про случайные леса и про метод градиентного бустинга. Построение предсказывающих алгоритмов — это лишь часть работы при решении задачи анализа данных. Мы разберемся и с другими этапами: оценивание обобщающей способности алгоритмов, подбор параметров модели, выбор и подсчет метрик качества. Задания и видео курса разработаны на Python 2.

...
Cours3

Поиск структуры в данных

4.7
1,119 notes
111 avis

В машинном обучении встречаются задачи, где нужно изучить структуру данных, найти в них скрытые взаимосвязи и закономерности. Например, нам может понадобиться описать каждого клиента банка с помощью меньшего количества переменных — для этого можно использовать методы понижения размерности, основанные на матричных разложениях. Такие методы пытаются сформировать новые признаки на основе старых, сохранив как можно больше информации в данных. Другим примером может служить задача тематического моделирования, в которой для набора текстов нужно построить модель, объясняющую процесс формирования этих текстов из небольшого количества тем. Такие задачи назвают обучением без учителя. В отличие от обучения с учителем, в них не предполагают восстановление зависимости между объектами и целевой переменной. Из этого курса вы узнаете об алгоритмах кластеризации данных, с помощью которых, например, можно искать группы схожих клиентов мобильного оператора. Вы научитесь строить матричные разложения и решать задачу тематического моделирования, понижать размерность данных, искать аномалии и визуализировать многомерные данные. Задания и видео курса разработаны на Python 2.

...
Cours4

Построение выводов по данным

4.7
760 notes
105 avis

Влияет ли знание методов анализа данных на уровень заработной платы? Работает ли система оценки кредитоспособности клиентов банка? Действительно ли новый баннер лучше старого? Чтобы ответить на такие вопросы, нужно собрать данные. Данные почти всегда содержат шум, поэтому утверждения, которые можно сделать на их основе, верны не всегда, а только с определённой вероятностью. Строить наиболее корректные выводы и численно оценивать степень уверенности в них помогают методы статистики. Как можно оценивать неизвестные параметры системы по небольшому количеству наблюдений? Как измерить точность таких оценок? Какие данные нужны, чтобы ответить на ваш вопрос, и на какие вопросы можно ответить с помощью уже имеющихся данных? Вы узнаете все, что нужно для успешного превращения данных в выводы — организация экспериментов, A/B-тестирование, универсальные методы оценки параметров и проверки гипотез, корреляции и причинно-следственные связи. Задания и видео курса разработаны на Python 2.

...

Enseignants

Avatar

Антон Слесарев

руководитель группы распознавания образов Яндекс
Avatar

Константин Воронцов

доктор физико-математических наук, профессор
Кафедра интеллектуальных систем

Partenaires du secteur

Industry Partner Logo #0

À propos de Institut de physique et de technologie de Moscou

Московский физико-технический институт (Физтех) является одним из ведущих вузов страны и входит в основные рейтинги лучших университетов мира. Институт обладает не только богатой историей – основателями и профессорами института были Нобелевские лауреаты Пётр Капица, Лев Ландау и Николай Семенов – но и большой научно-исследовательской базой. Основой образования в МФТИ является уникальная «система Физтеха», сформулированная Петром Капицей: кропотливый отбор одаренных и склонных к творческой работе абитуриентов; участие в обучении ведущих научных работников; индивидуальный подход к отдельным студентам с целью развития их творческих задатков; воспитание с первых шагов в атмосфере технических исследований и конструктивного творчества с использованием потенциала лучших лабораторий страны. Среди выпускников МФТИ — нобелевские лауреаты Андрей Гейм и Константин Новоселов, основатель компании ABBYY Давид Ян, один из авторов архитектурных принципов построения вычислительных комплексов Борис Бабаян и др....

À propos de Yandex

Yandex is a technology company that builds intelligent products and services powered by machine learning. Our goal is to help consumers and businesses better navigate the online and offline world....

Foire Aux Questions

  • Oui ! Pour commencer, cliquez sur la carte du cours qui vous intéresse et inscrivez-vous. Vous pouvez vous inscrire et terminer le cours pour obtenir un Certificat partageable, ou vous pouvez accéder au cours en auditeur libre afin d'en visualiser gratuitement le contenu. Si vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Visitez votre tableau de bord d'étudiant(e) pour suivre vos progrès.

  • Ce cours est entièrement en ligne : vous n'avez donc pas besoin de vous présenter physiquement dans une salle de classe. Vous pouvez accéder à vos vidéos de cours, lectures et devoirs en tout temps et en tout lieu, par l'intermédiaire du Web ou de votre appareil mobile.

  • Cette Spécialisation n'est pas associée à des crédits universitaires, mais certaines universités peuvent décider d'accepter des Certificats de Spécialisation pour des crédits. Vérifiez-le auprès de votre établissement pour en savoir plus.

  • Время прохождения сильно зависит от темпа обучения. Большинство слушателей сможет пройти специализацию за 3-6 месяцев.

  • Базовые знания математики и основ программирования.

  • Да, если вы хотите получить максимальную пользу от обучения, все курсы стоит проходить по порядку.

  • Идеальная цель нашей специализации — сделать так, чтобы слушатели могли пройти собеседование на позицию дата сайентиста уровня, соответствующего их профессиональному опыту. Вы освоите науку о данных и научитесь решать с помощью ее методов аналитические задачи — от сбора данных до построения оптимальной модели и оценки ее качества.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.