À propos de ce Spécialisation
Cours en ligne à 100 %

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible

Planning flexible

Définissez et respectez des dates limites flexibles.
Niveau débutant

Niveau débutant

Langues disponibles

Anglais

Sous-titres : Anglais...
Cours en ligne à 100 %

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.
Planning flexible

Planning flexible

Définissez et respectez des dates limites flexibles.
Niveau débutant

Niveau débutant

Langues disponibles

Anglais

Sous-titres : Anglais...

Fonctionnement du Spécialisation

Suivez les cours

Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.

Projet pratique

Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.

Obtenir un Certificat

Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

how it works

Cette Spécialisation compte 9 cours

Cours1

Digital Manufacturing & Design

4.6
437 notes
110 avis
This course will expose you to the transformation taking place, throughout the world, in the way that products are being designed and manufactured. The transformation is happening through digital manufacturing and design (DM&D) – a shift from paper-based processes to digital processes in the manufacturing industry. By the end of this course, you’ll understand what DMD is and how it is impacting careers, practices and processes in companies both large and small. You will gain an understanding of and appreciation for the role that technology is playing in this transition. The technology we use every day – whether it is communicating with friends and family, purchasing products or streaming entertainment – can benefit design and manufacturing, making companies and workers more competitive, agile and productive. Discover how this new approach to making products makes companies more responsive, and employees more involved and engaged, as new career paths in advanced manufacturing evolve. Main concepts of this course will be delivered through lectures, readings, discussions and various videos. This is the first course in the Digital Manufacturing & Design Technology specialization that explores the many facets of manufacturing’s “Fourth Revolution,” aka Industry 4.0, and features a culminating project involving creation of a roadmap to achieve a self-established DMD-related professional goal. To learn more about the Digital Manufacturing and Design Technology specialization, please watch the overview video by copying and pasting the following link into your web browser: https://youtu.be/wETK1O9c-CA...
Cours2

Digital Thread: Components

4.5
178 notes
34 avis
This course will help you recognize how the "digital thread" is the backbone of the digital manufacturing and design (DM&D) transformation, turning manufacturing processes from paper-based to digital-based. You will have a working understanding of the digital thread – the stream that starts at product concept and continues to accumulate information and data throughout the product’s life cycle – and identify opportunities to leverage it. Gain an understanding of how "the right information, in the right place, at the right time" should flow. This is one of the keys to unlocking the potential of a digital design process. Acknowledging this will enable you to be more involved in a product’s development cycle, and to help a company become more flexible. Main concepts of this course will be delivered through lectures, readings, discussions and various videos. This is the second course in the Digital Manufacturing & Design Technology specialization that explores the many facets of manufacturing’s “Fourth Revolution,” aka Industry 4.0, and features a culminating project involving creation of a roadmap to achieve a self-established DMD-related professional goal. To learn more about the Digital Manufacturing and Design Technology specialization, please watch the overview video by copying and pasting the following link into your web browser: https://youtu.be/wETK1O9c-CA...
Cours3

Digital Thread: Implementation

4.6
118 notes
26 avis
There are opportunities throughout the design process of any product to make significant changes, and ultimately impact the future of manufacturing, by embracing the digital thread. In this course, you will dig into the transformation taking place in how products are designed and manufactured throughout the world. It is the second of two courses that focuses on the "digital thread" – the stream that starts at the creation of a product concept and continues to accumulate information and data throughout the product life cycle. Hear about the realities of implementing the digital thread, directly from someone responsible for making it happen at a company. Learn how the digital thread can fit into product development processes in an office, on a shop floor, and even across an enterprise. Be prepared to talk about the benefits, and limitations, of enacting it. Main concepts of this course will be delivered through lectures, readings, discussions and various videos. This is the third course in the Digital Manufacturing & Design Technology specialization that explores the many facets of manufacturing’s “Fourth Revolution,” aka Industry 4.0, and features a culminating project involving creation of a roadmap to achieve a self-established DMD-related professional goal. To learn more about the Digital Manufacturing and Design Technology specialization, please watch the overview video by copying and pasting the following link into your web browser: https://youtu.be/wETK1O9c-CA...
Cours4

Advanced Manufacturing Process Analysis

4.2
122 notes
24 avis
Variability is a fact of life in manufacturing environments, impacting product quality and yield. Through this course, students will learn why performing advanced analysis of manufacturing processes is integral for diagnosing and correcting operational flaws in order to improve yields and reduce costs. Gain insights into the best ways to collect, prepare and analyze data, as well as computational platforms that can be leveraged to collect and process data over sustained periods of time. Become better prepared to participate as a member of an advanced analysis team and share valuable inputs on effective implementation. Main concepts of this course will be delivered through lectures, readings, discussions and various videos. This is the fourth course in the Digital Manufacturing & Design Technology specialization that explores the many facets of manufacturing’s “Fourth Revolution,” aka Industry 4.0, and features a culminating project involving creation of a roadmap to achieve a self-established DMD-related professional goal. To learn more about the Digital Manufacturing and Design Technology specialization, please watch the overview video by copying and pasting the following link into your web browser: https://youtu.be/wETK1O9c-CA...

Enseignants

Avatar

Amy Moore

Project Manager & Act-Authorized Job Profiler
University at Buffalo: The Center for Industrial Effectiveness (TCIE)
Avatar

Ken English

Deputy Director
Sustainable Manufacturing and Advanced Robotic Technologies Community of Excellence
Avatar

Sara Behdad

Assistant Professor
Mechanical and Aerospace Engineering, Industrial and Systems Engineering
Avatar

Shambhu Upadhyaya

Professor
Computer Science and Engineering
Avatar

Rahul Rai

Associate Professor
Mechanical and Aerospace Engineering

Partenaires du secteur

Industry Partner Logo #0

À propos de University at Buffalo

The University at Buffalo (UB) is a premier, research-intensive public university and the largest, most comprehensive institution of the State University of New York (SUNY) system. UB offers more than 100 undergraduate degrees and nearly 300 graduate and professional programs....

À propos de The State University of New York

The State University of New York, with 64 unique institutions, is the largest comprehensive system of higher education in the United States. Educating nearly 468,000 students in more than 7,500 degree and certificate programs both on campus and online, SUNY has nearly 3 million alumni around the globe....

Foire Aux Questions

  • Oui ! Pour commencer, cliquez sur la carte du cours qui vous intéresse et inscrivez-vous. Vous pouvez vous inscrire et terminer le cours pour obtenir un Certificat partageable, ou vous pouvez accéder au cours en auditeur libre afin d'en visualiser gratuitement le contenu. Si vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Visitez votre tableau de bord d'étudiant(e) pour suivre vos progrès.

  • Ce cours est entièrement en ligne : vous n'avez donc pas besoin de vous présenter physiquement dans une salle de classe. Vous pouvez accéder à vos vidéos de cours, lectures et devoirs en tout temps et en tout lieu, par l'intermédiaire du Web ou de votre appareil mobile.

  • Cette Spécialisation n'est pas associée à des crédits universitaires, mais certaines universités peuvent décider d'accepter des Certificats de Spécialisation pour des crédits. Vérifiez-le auprès de votre établissement pour en savoir plus.

  • Time to completion can vary based on your schedule, but learners can expect to complete the Specialization in 7 to 10 months.

  • There is no background knowledge, in particular, that is necessary to take this course. We recommend at least a high school education and interest in how an idea becomes a prototype, a prototype becomes a product, and a product becomes a consumable.

  • We strongly urge you begin by taking the following three courses first, in this order: Digital Manufacturing & Design, Digital Thread: Components, and Digital Thread: Implementation. The MBSE: Model-Based Systems Engineering course should be taken at the very end. Everything in between may be taken in any order desired.

  • Upon Specialization completion, you will have determined your skill levels in relation to the digital manufacturing and design industry, identified a future manufacturing career path that you are interested in pursuing, and examined the community in which you live to recognize and embark on the opportunities that exist. Additionally, you will gain the confidence to have intelligent, fact-based dialogues, either in informal or professional conversations, about:

    · How advances in technology are shaping the "factory of the future" in a new phase of industrial revolution popularly referred to as "Industry 4.0," which encompasses the Internet of Things (IoT). The fusion of technologies resulting in IoT will make our lives more exciting, intelligent, interactive and innovative than ever before!

    · Social factors like the US-China trade imbalance and accelerated technology obsolescence that are driving the need for disruptive innovation in the manufacturing world.

    · The world of the "Digital Thread," where design of a new product and its manufacturing can occur simultaneously (instead of in sequence), resulting in significantly faster product launches, superior quality and competitive prices.

    · The unimaginably large amount of data that the next generation of manufacturing will handle, and how "super computers" and "high power computing" will be able to transform it into actionable information with ease, speed and accuracy.

    · How robots are used to make rapid and reliable decisions, consequently making the production shop floor into an "Intelligent Machining" environment.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.