À propos de ce Spécialisation
4,135 consultations récentes

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau intermédiaire

Approx. 3 mois pour terminer

14 heures/semaine recommandées

Anglais

Sous-titres : Anglais

Ce que vous allez apprendre

  • Check

    Design computer vision application programs from scratch

  • Check

    Leverage MATLAB functionalities to implement sophisticated vision applications

  • Check

    Discern the level of complexity of vision algorithms

  • Check

    Understand the limitations of vision algorithms

Compétences que vous acquerrez

MatlabMachine LearningImage ProcessingComputer ProgrammingComputer Vision
Les étudiants prenant part à ce Specialization sont
  • Machine Learning Engineers
  • Data Scientists
  • Researchers
  • Technical Solutions Engineers
  • Software Engineers

Cours en ligne à 100 %

Commencez dès maintenant et apprenez aux horaires qui vous conviennent.

Planning flexible

Définissez et respectez des dates limites flexibles.

Niveau intermédiaire

Approx. 3 mois pour terminer

14 heures/semaine recommandées

Anglais

Sous-titres : Anglais

Comment fonctionne la Spécialisation

Suivez les cours

Une Spécialisation Coursera est une série de cours axés sur la maîtrise d'une compétence. Pour commencer, inscrivez-vous directement à la Spécialisation ou passez en revue ses cours et choisissez celui par lequel vous souhaitez commencer. Lorsque vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Il est possible de terminer seulement un cours : vous pouvez suspendre votre formation ou résilier votre abonnement à tout moment. Rendez-vous sur votre tableau de bord d'étudiant pour suivre vos inscriptions aux cours et vos progrès.

Projet pratique

Chaque Spécialisation inclut un projet pratique. Vous devez réussir le(s) projet(s) pour terminer la Spécialisation et obtenir votre Certificat. Si la Spécialisation inclut un cours dédié au projet pratique, vous devrez terminer tous les autres cours avant de pouvoir le commencer.

Obtenir un Certificat

Lorsque vous aurez terminé tous les cours et le projet pratique, vous obtiendrez un Certificat que vous pourrez partager avec des employeurs éventuels et votre réseau professionnel.

how it works

Cette Spécialisation compte 4 cours

Cours1

Computer Vision Basics

3.8
122 notes
47 avis
Cours2

Image Processing, Features & Segmentation

Cours3

Stereo Vision, Dense Motion & Tracking

Cours4

Visual Recognition & Understanding

Enseignants

Avatar

Radhakrishna Dasari

Instructor
Department of Computer Science
Avatar

Junsong Yuan

Associate Professor and Director of Visual Computing Lab
Computer Science and Engineering

À propos de Université de Buffalo

The University at Buffalo (UB) is a premier, research-intensive public university and the largest, most comprehensive institution of the State University of New York (SUNY) system. UB offers more than 100 undergraduate degrees and nearly 300 graduate and professional programs....

À propos de Université d'État de New York

The State University of New York, with 64 unique institutions, is the largest comprehensive system of higher education in the United States. Educating nearly 468,000 students in more than 7,500 degree and certificate programs both on campus and online, SUNY has nearly 3 million alumni around the globe....

Foire Aux Questions

  • Oui ! Pour commencer, cliquez sur la carte du cours qui vous intéresse et inscrivez-vous. Vous pouvez vous inscrire et terminer le cours pour obtenir un Certificat partageable, ou vous pouvez accéder au cours en auditeur libre afin d'en visualiser gratuitement le contenu. Si vous vous abonnez à un cours faisant partie d'une Spécialisation, vous êtes automatiquement abonné(e) à la Spécialisation complète. Visitez votre tableau de bord d'étudiant(e) pour suivre vos progrès.

  • Ce cours est entièrement en ligne : vous n'avez donc pas besoin de vous présenter physiquement dans une salle de classe. Vous pouvez accéder à vos vidéos de cours, lectures et devoirs en tout temps et en tout lieu, par l'intermédiaire du Web ou de votre appareil mobile.

  • Time to completion can vary based on your schedule, but learners can expect to complete the specialization in 3 to 6 months.

  • This specialization is taught in MATLAB using computer vision and supporting toolboxes. Learners should have basic programming skills and experience (understanding of for loops, if/else statements), specifically in MATLAB (Mathworks provides the basics here: https://www.mathworks.com/learn/tutorials/matlab-onramp.html). Learners should also be familiar with the following: basic linear algebra (matrix vector operations and notation), 3D co-ordinate systems and transformations, basic calculus (derivatives and integration) and basic probability (random variables).

  • It is important that learners take the courses in order, since the concepts and projects are developed based on the previous course, as described below.

    · The first course focuses on providing the mathematical foundations for the entire specialization and introduces the majority of concepts covered in the next three courses.

    · The second course explores the concepts of image processing, which are used in courses 3 and 4.

    · The third course covers the concepts of dense motion and tracking, which are used in course 4.

    · The fourth course builds upon the concepts in courses 1, 2 and 3, and focuses on higher-level, sophisticated computer vision concepts and visual understanding.

  • No

  • On completion of this specialization, a learner will be able to:

    · Recognize foundational concepts of computer vision

    · Develop computer vision application programs from scratch

    · Leverage MATLAB functionalities to implement sophisticated vision applications

    · Discern the level of complexity of vision algorithms

    · Understand the limitations of vision algorithms

    · Design and build image processing applications

    · Develop 3D vision applications using a stereo imaging system

    · Implement a recognition system using machine learning algorithms

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.