Transfer Learning for Food Classification

4.6
étoiles
57 évaluations
Offert par
Coursera Project Network
3,619 déjà inscrits
Dans ce projet guidé, vous :

Understand the theory and intuition behind Convolutional Neural Networks (CNNs) and transfer learning

Build and train a Deep Learning Model using Pre-Trained InceptionResnetV2

Assess the performance of trained CNN using various Key performance indicators

Clock2 hours
BeginnerDébutant
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

In this hands-on project, we will train a deep learning model to predict the type of food and then fine tune the model to improve its performance. This project could be practically applied in food industry to detect the type and quality of food. In this 2-hours long project-based course, you will be able to: - Understand the theory and intuition behind Convolutional Neural Networks (CNNs). - Understand the theory and intuition behind transfer learning. - Import Key libraries, dataset and visualize images. - Perform data augmentation. - Build a Deep Learning Model using Pre-Trained InceptionResnetV2. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs.

Les compétences que vous développerez

Deep LearningMachine LearningPython ProgrammingArtificial Intelligence(AI)Computer Vision

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Understand the Problem Statement and Business Case

  2. Import Libraries and Datasets

  3. Perform Data Exploration and Visualization

  4. Perform Image Augmentation and Create Data Generator

  5. Understand the theory and intuition behind Transfer Learning

  6. Build Deep Learning model using Pre-trained Inception ResNet

  7. Compile and Train Deep Learning Model

  8. Fine Tune the Trained Model

  9. Assess the Performance of the Trained Model

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.