TensorFlow for AI: Neural Network Representation

4.2
étoiles

17 évaluations

Offert par
Dans ce Projet Guidé, vous :

Learn how to build a real-world deep learning model

Learn how to create a convolutional neural network from Scratch with Tensorflow

Learn how to create, train, and test a convolutional neural network with Tensorflow

1.5 hours
Intermédiaire
Aucun téléchargement requis
Vidéo en écran partagé
Anglais
Ordinateur de bureau uniquement

This guided project course is part of the "Tensorflow for AI" series, and this series presents material that builds on the first course of DeepLearning.AI TensorFlow Developer Professional Certificate, which will help learners reinforce their skills and build more projects with Tensorflow. In this 1.5-hour long project-based course, you will learn practically how to work on a deep learning task in the real world and create, train, and test a neural network with Tensorflow using real-world images, and you will get a bonus deep learning exercise implemented with Tensorflow. By the end of this project, you will have created a deep neural network with TensorFlow on a real-world dataset. This class is for learners who want to use Python for building neural networks with TensorFlow, and for learners who are currently taking a basic deep learning course or have already finished a deep learning course and are searching for a practical deep learning project with TensorFlow project. Also, this project provides learners with further knowledge about creating and training convolutional neural networks and improves their skills in Tensorflow which helps them in fulfilling their career goals by adding this project to their portfolios.

Les compétences que vous développerez

  • Deep Learning

  • Artificial Neural Network

  • Python Programming

  • Tensorflow

  • keras

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Introduction and overview of the project

  2. Import and explore the dataset

  3. Build a neural network model from scratch

  4. Data preprocessing and training the model

  5. Visualizing intermediate representations

Comment fonctionnent les Projets Guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions

En achetant un Projet Guidé, vous obtenez tout ce dont vous avez besoin pour terminer ce Projet Guidé, y compris l'accès à un espace de travail de bureau cloud, via votre navigateur web, qui contient les fichiers et les logiciels dont vous avez besoin pour commencer, ainsi que les instructions vidéo étape par étape d'un expert en la matière.

Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.

Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.

À partir du Projet Guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.

Aucun remboursement n'est disponible pour les Projets Guidés. Consulter notre politique de remboursement complète.

Aucune aide financière n'est disponible pour les Projets Guidés.

L'audit n'est pas disponible pour les Projets Guidés.

En haut de la page, vous pouvez appuyer sur le niveau d'expérience de ce Projet Guidé pour afficher les connaissances requises. Pour chaque niveau de Projet Guidé, votre enseignant vous guidera étape par étape.

Oui, tout ce dont vous avez besoin pour terminer votre Projet Guidé sera présent sur un bureau cloud disponible dans votre navigateur.

Vous apprenez en effectuant des tâches dans un environnement à écran partagé, directement dans votre navigateur. Sur le côté gauche de l'écran, vous terminez la tâche dans votre espace de travail. Sur le côté droit de l'écran, vous voyez un(e) enseignant(e) qui vous guide tout au long du projet, étape par étape.