Support Vector Machine Classification in Python

4.0
étoiles
18 évaluations
6 avis
Offert par
Rhyme
Dans ce Guided Project, vous :

import the dataset and perform training/testing set splits

Apply feature scaling for normalization

Build an SVM classifier and make Predictions

Build a Confusion Matrix and Visualize the results

Clock2 hours
IntermediateIntermédiaire
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

In this 1-hour long guided project-based course, you will learn how to use Python to implement a Support Vector Machine algorithm for classification. This type of algorithm classifies output data and makes predictions. The output of this model is a set of visualized scattered plots separated with a straight line. You will learn the fundamental theory and practical illustrations behind Support Vector Machines and learn to fit, examine, and utilize supervised Classification models using SVM to classify data, using Python. We will walk you step-by-step into Machine Learning supervised problems. With every task in this project, you will expand your knowledge, develop new skills, and broaden your experience in Machine Learning. Particularly, you will build a Support Vector Machine algorithm, and by the end of this project, you will be able to build your own SVM classification model with amazing visualization. In order to be successful in this project, you should just know the basics of Python and classification algorithms.

Les compétences que vous développerez

Machine LearningPython ProgrammingSupport Vector Machine (SVM)classificationSupervised Learning

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Understand the concept of building a Support Vector Machine classification algorithm with a real-world example

  2. Import and explore the dataset and libraries: numpy, pandas and matplotlib

  3. Split the dataset into training set and testing set

  4. Apply feature scaling to normalize the input features

  5. Fit the SVM classifier to the dataset and making predictions

  6. Visualize training and testing sets results

How Guided Projects work

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions

Foire Aux Questions

  • By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.

  • Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.

  • Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.

  • You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.

  • Guided Projects are not eligible for refunds. Consulter notre politique de remboursement complète.

  • Financial aid is not available for Guided Projects.

  • Auditing is not available for Guided Projects.

  • At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.

  • Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.

  • Vous apprenez en effectuant des tâches dans un environnement à écran partagé, directement dans votre navigateur. Sur le côté gauche de l'écran, vous terminez la tâche dans votre espace de travail. Sur le côté droit de l'écran, vous voyez un(e) enseignant(e) qui vous guide tout au long du projet, étape par étape.

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.