Building Machine Learning Pipelines in PySpark MLlib

4.3
étoiles

49 évaluations

Offert par

2 568 déjà inscrits

Dans ce Projet Guidé, vous :

Learn how to create a Random Forest pipeline in PySpark

Learn how to choose best model parameters using Cross Validation and Hyperparameter tuning in PySpark

Learn how to create predictions and assess model's performance in PySpark

1.5 hours
Intermédiaire
Aucun téléchargement requis
Vidéo en écran partagé
Anglais
Ordinateur de bureau uniquement

By the end of this project, you will learn how to create machine learning pipelines using Python and Spark, free, open-source programs that you can download. You will learn how to load your dataset in Spark and learn how to perform basic cleaning techniques such as removing columns with high missing values and removing rows with missing values. You will then create a machine learning pipeline with a random forest regression model. You will use cross validation and parameter tuning to select the best model from the pipeline. Lastly, you will evaluate your model’s performance using various metrics. A pipeline in Spark combines multiple execution steps in the order of their execution. So rather than executing the steps individually, one can put them in a pipeline to streamline the machine learning process. You can save this pipeline, share it with your colleagues, and load it back again effortlessly. Note: You should have a Gmail account which you will use to sign into Google Colab. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

  • Machine Learning Pipelines

  • hyperparameter tuning

  • PySpark

  • Cross Validation

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Install Spark on Google Colab and load a dataset in PySpark

  2. Describe and clean your dataset

  3. Create a Random Forest pipeline to predict car prices

  4. Create a cross validator for hyperparameter tuning

  5. Train your model and predict test set car prices

  6. Evaluate your model’s performance via several metrics

Comment fonctionnent les Projets Guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Avis

Meilleurs avis pour BUILDING MACHINE LEARNING PIPELINES IN PYSPARK MLLIB

Voir tous les avis

Foire Aux Questions

En achetant un Projet Guidé, vous obtenez tout ce dont vous avez besoin pour terminer ce Projet Guidé, y compris l'accès à un espace de travail de bureau cloud, via votre navigateur web, qui contient les fichiers et les logiciels dont vous avez besoin pour commencer, ainsi que les instructions vidéo étape par étape d'un expert en la matière.

Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.

Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.

À partir du Projet Guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.

Aucun remboursement n'est disponible pour les Projets Guidés. Consulter notre politique de remboursement complète.

Aucune aide financière n'est disponible pour les Projets Guidés.

L'audit n'est pas disponible pour les Projets Guidés.

En haut de la page, vous pouvez appuyer sur le niveau d'expérience de ce Projet Guidé pour afficher les connaissances requises. Pour chaque niveau de Projet Guidé, votre enseignant vous guidera étape par étape.

Oui, tout ce dont vous avez besoin pour terminer votre Projet Guidé sera présent sur un bureau cloud disponible dans votre navigateur.

Vous apprenez en effectuant des tâches dans un environnement à écran partagé, directement dans votre navigateur. Sur le côté gauche de l'écran, vous terminez la tâche dans votre espace de travail. Sur le côté droit de l'écran, vous voyez un(e) enseignant(e) qui vous guide tout au long du projet, étape par étape.