Chevron Left
Retour à Siamese Network with Triplet Loss in Keras

Avis et commentaires pour d'étudiants pour Siamese Network with Triplet Loss in Keras par Coursera Project Network

109 évaluations

À propos du cours

In this 2-hour long project-based course, you will learn how to implement a Triplet Loss function, create a Siamese Network, and train the network with the Triplet Loss function. With this training process, the network will learn to produce Embedding of different classes from a given dataset in a way that Embedding of examples from different classes will start to move away from each other in the vector space. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your Internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with (e.g. Python, Jupyter, and Tensorflow) pre-installed. Prerequisites: In order to be successful in this project, you should be familiar with Python, Keras, Neural Networks. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Meilleurs avis


16 juin 2020

I like the way we got involved into practice by setting goals which are a bit challenging yet we want to achieve successfully.


2 août 2020

worth enrolling!! checkout in detail about this project even after completion

Filtrer par :

1 - 19 sur 19 Avis pour Siamese Network with Triplet Loss in Keras

par Isra P

12 avr. 2020

par Joerg A

27 mai 2020

par Abhishek P G

17 juin 2020

par Luis A G L

22 sept. 2020

par Nittala V B

3 août 2020

par Fabian L

14 juin 2020

par Angshuman S

15 juin 2020


2 juin 2020

par Doss D

14 juin 2020

par Sourav D

31 mai 2020

par Santiago G

5 nov. 2020

par sarithanakkala

24 juin 2020

par Qasim K

4 déc. 2021

par Siddhesh S

20 avr. 2020

par Sri C

4 déc. 2020

par Simon S R

4 sept. 2020

par Jorge G

25 févr. 2021

par Yannik U

16 mars 2022

par Molin D

8 août 2020