Chevron Left
Retour à Neural Style Transfer with TensorFlow

Avis et commentaires pour d'étudiants pour Neural Style Transfer with TensorFlow par Coursera Project Network

4.6
étoiles
111 évaluations

À propos du cours

In this 2-hour long project-based course, you will learn the basics of Neural Style Transfer with TensorFlow. Neural Style Transfer is a technique to apply stylistic features of a Style image onto a Content image while retaining the Content's overall structure and complex features. We will see how to create content and style models, compute content and style costs and ultimately run a training loop to optimize a proposed image which retains content features while imparting stylistic features from another image. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Tensorflow pre-installed. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Meilleurs avis

RB

17 juin 2020

Excellent and precise explanation.Nice course.Instructor has been really fantastic.

PA

2 juin 2020

This was a great project. Explanations were given nicely.

Filtrer par :

1 - 14 sur 14 Avis pour Neural Style Transfer with TensorFlow

par Ravi P B

18 juin 2020

par PRASANNA R A

3 juin 2020

par Prashik R

3 juil. 2020

par Diego G

22 oct. 2020

par Ashwani Y

21 mai 2020

par KHOKHRIYA D

11 avr. 2020

par JONNALA S R

7 mai 2020

par Kamlesh C

16 juil. 2020

par aithagoni m

13 juil. 2020

par tale p

28 juin 2020

par Rajasinghe R

28 mai 2020

par Abrar I A

24 avr. 2020

par Leonardo M

22 août 2020

par Jorge G

25 févr. 2021