Music Recommender System Using Pyspark

4.5
étoiles
14 évaluations
Offert par
Coursera Project Network
Dans ce Projet Guidé, vous :

Learn how to setup the google colab for distributed data processing

Learn how aggregate a pyspark dataframe to have the data needed for our machine learning model

Learn how to use StringIndexer to convert a String (categorical) column into Unique Integral column

Learn how to create ALS model for Recommender System

Clock1 hour
IntermediateIntermédiaire
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

Nowadays, recommender systems are everywhere. for example, Amazon uses recommender systems to suggest some products that you might be interested in based on the products you've bought earlier. Or Spotify will suggest new tracks based on the songs you use to listen to every day. Most of these recommender systems use some algorithms which are based on Matrix factorization such as NMF( NON NEGATIVE MATRIX FACTORIZATION) or ALS (Alternating Least Square). So in this Project, we are going to use ALS Algorithm to create a Music Recommender system to suggest new tracks to different users based upon the songs they've been listening to. As a very important prerequisite of this course, I suggest you study a little bit about ALS Algorithm because in this course we will not cover any theoretical concepts. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

  • Programming Model
  • Algorithms
  • Algorithm Training
  • PySpark

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Prepare the Google Colab for distributed data processing

  2. Mounting our Google Drive into Google Colab environment

  3. Importing csv file of our Dataset (4 Gb) into pySpark dataframe

  4. Dropping some useless columns and nan Values in our dataframe

  5. Performing an Aggregation to prepare the data

  6. Learn how to use StringIndexer to convert a String (categorical) column into Unique Integral column

  7. Creating ALS model for Recommender System

Comment fonctionnent les Projets Guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Avis

Meilleurs avis pour MUSIC RECOMMENDER SYSTEM USING PYSPARK

Voir tous les avis

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.