Movie Recommendation System using Collaborative Filtering

4.4
étoiles
43 évaluations
Offert par
Coursera Project Network
1,765 déjà inscrits
Dans ce projet guidé, vous :

Learn to create, train and evaluate a recommendation engine with Scikit-Surprise

Learn to clean, analyse and use real-word datasets for recommendation systems

Clock1 hour 25 minutes
BeginnerDébutant
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

With the amount of available online content ever-increasing and all the platforms trying to grab your attention by giving you personalized recommendations, recommendation engines are more important than ever. In this project-based course, you will create a recommendation system using Collaborative Filtering with help of Scikit-surprise library, which learns from past user behavior. We will be working with a movie lense dataset and by the end of this project, you will be able to give unique movie recommendations for every user based on their past ratings. This project is best suited for anyone who is venturing into data science and is curious as to how recommendation engines work. This project will be a great addition to your portfolio to showcase your real-world hands-on experience with recommendation systems as we would be working with a real-world dataset.

Les compétences que vous développerez

Data ScienceCollaborative FilteringMachine LearningPython ProgrammingRecommender Systems

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Set up required modules and get them ready for use. Become familiar with the guided project interface

  2. Import real-world dataset and clean it

  3. Do exploratory data analysis on the dataset

  4. Remove the unwanted ratings from the dataset and thus do Dimensionality Reduction

  5. Create trainset and antiset from the data

  6. Train your model on your data and see its performance

  7. Make predictions and recommend the best movies for each user

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.