Logistic Regression for Classification using Julia

Offert par
Coursera Project Network
Dans ce Projet Guidé, vous :

Balance data suing the SMOTE method.

Build a logistic regression model.

Clock1 hour 30 minutes
BeginnerDébutant
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

This guided project is about book genre classification using logistic regression in Julia. It is ideal for beginners who do not know what logistic regression is because this project explains these concepts in simple terms. While you are watching me code, you will get a cloud desktop with all the required software pre-installed. This will allow you to code along with me. After all, we learn best with active, hands-on learning. Special features: 1) Simple explanations of important concepts. 2) Use of images to aid in explanation. 3) Use a real world dataset. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

  • Data Science
  • Machine Learning
  • Logistic Regression
  • data preperation
  • julia

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Exploratory data analysis

  2. One-hot encoding

  3. Check if data is balanced

  4. Build a logistic regression model

  5. Check model accuracy

  6. Check ROC numbers to determine number of false positives and false negatives.

  7. Using SMOTE to correct the imbalanced data

Comment fonctionnent les Projets Guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.