Impute Data to Forecast Demand in Google Sheets

4.9
étoiles
8 évaluations
Offert par
Coursera Project Network
Dans ce Projet guidé gratuit, vous :

Understand why and how imputing missing values supports an accurate analysis.

Replace missing data with three simple imputation methods in Google Sheets.

Understand uses for moving averages techniques, how to evaluate effectiveness of imputation methods, and how to conduct a demand forecast.

Showcase this hands-on experience in an interview

Clock2 hours
BeginnerAdapté aux débutants
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

This course will introduce you to cleaning data and replacing missing values with imputed data to support demand forecasting. Demand forecasts are used to maximize revenue, build efficiencies in operational planning, and to drive future growth. Forecasting techniques can be applied to make realistic predictions of outcomes of everything from how demand affects pricing and sales opportunities to operational planning for electrical utilities and healthcare facilities. We can only have confidence in the demand predictions we produce, when we also have confidence in the data quality feeding those predictions. Ensuring that confidence requires using clean data with no missing values for our forecast models. Handling missing data is an essential part of prepping clean data for a demand forecast. In this course, we will review the principles of applying central measures of tendency and regression techniques to impute missing values. As you clean the data, you will visualize it with charts, replace inconsistent values and impute values while comparing the outcomes of the statistical techniques you have applied. When your data is clean, you will create a demand forecast. You will do this as we work side-by-side in the free-to-use software Google Sheets. By the end of this course, you will understand use cases for imputing missing values and be able to confidently apply multiple statistical imputation techniques in any spreadsheet software. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Conditions

Some familiarity with spreadsheet software is helpful, but not required.

Les compétences que vous développerez

Machine LearningForecasting DemandFeature EngineeringData AnalysisBusiness Intelligence

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Access Google Sheets.

  2. Import data into Google Sheets.

  3. Impute data with three simple imputation methods in Google Sheets.

  4. Impute data with linear and exponential regression, and harmonic means.

  5. Impute data with moving averages techniques, evaluate the results of all imputation methods, and conduct a demand forecast.

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.