Imbalanced-learn: modelos de ML con datos desequilibrados

Offert par
Coursera Project Network
Dans ce Projet Guidé, vous :

Aprender que son los datos desbalanceados

Aplicar técnicas de under-sampling y over-sampling

Conocer las técnicas para tratar con datos desbalanceados

Clock2 horas
BeginnerDébutant
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsEspagnol
LaptopOrdinateur de bureau uniquement

Este proyecto es un curso práctico y efectivo para aprender que es el desbalanceo de clases en Machine leraning y como tratarlo. Aprenderemos las técnicas más avanzadas para trabajar con datos desbalanceados como: bSMOTE, ADASYN, SMOTEEN, etc. También aprenderemos a generar modelos capaces de trabajar con datos desbalanceados. Una gran parte de los problemas de clasificación utilizan datos debalanceadas. Si no se tratan estos casos estaremos generando modelos que no estén funcionando correctamente, pese a que a priori parezca que si. Por eso, en este curso aprenderemos a como tratar este tipo de datos.

Les compétences que vous développerez

  • ADASYN
  • SMOTE
  • Machine Learning
  • Python Programming
  • Imbalanced-learn

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Introducción al desbalanceo de clases

  2. Aplicando técnicas para trabajar con datos desbalanceados

  3. Balanceo aleatorio

  4. Under-sampling

  5. Over-sampling

  6. Over-sampling seguido de under-sampling

  7. Modelos para datos desbalanceados

Comment fonctionnent les Projets Guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.