Chevron Left
Retour à Image Compression and Generation using Variational Autoencoders in Python

Avis et commentaires pour d'étudiants pour Image Compression and Generation using Variational Autoencoders in Python par Coursera Project Network

4.7
étoiles
71 évaluations

À propos du cours

In this 1-hour long project, you will be introduced to the Variational Autoencoder. We will discuss some basic theory behind this model, and move on to creating a machine learning project based on this architecture. Our data comprises 60.000 characters from a dataset of fonts. We will train a variational autoencoder that will be capable of compressing this character font data from 2500 dimensions down to 32 dimensions. This same model will be able to then reconstruct its original input with high fidelity. The true advantage of the variational autoencoder is its ability to create new outputs that come from distributions that closely follow its training data: we can output characters in brand new fonts. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Meilleurs avis

AF

28 juil. 2020

It is highly recommended to those who has a basic knowledge in ML and like to start using VAEs in pytorch framework. :-)

AS

19 juin 2020

It was really helpful. I am new to PyTorch but it gave a good level of understanding overall. thank you

Filtrer par :

1 - 13 sur 13 Avis pour Image Compression and Generation using Variational Autoencoders in Python

par Aida F

29 juil. 2020

par Thomas J V

18 sept. 2020

par ANKIT B S

20 juin 2020

par Debadri B

29 mai 2020

par Fernando C

28 sept. 2020

par JONNALA S R

7 mai 2020

par Gaikwad N

23 juil. 2020

par Doss D

2 juil. 2020

par aithagoni m

13 juil. 2020

par p s

25 juin 2020

par sarithanakkala

25 juin 2020

par tale p

17 juin 2020

par Simon S R

29 août 2020