Image Compression and Generation using Variational Autoencoders in Python

4.7
étoiles
63 évaluations
Offert par
Coursera Project Network
2,793 déjà inscrits
Dans ce projet guidé, vous :

How to preprocess and prepare data for vision tasks using PyTorch

What a variational autoencoder is and how to train one

How to compress, reconstruct, and generate new images using a generative model

Clock90 minutes
IntermediateIntermédiaire
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

In this 1-hour long project, you will be introduced to the Variational Autoencoder. We will discuss some basic theory behind this model, and move on to creating a machine learning project based on this architecture. Our data comprises 60.000 characters from a dataset of fonts. We will train a variational autoencoder that will be capable of compressing this character font data from 2500 dimensions down to 32 dimensions. This same model will be able to then reconstruct its original input with high fidelity. The true advantage of the variational autoencoder is its ability to create new outputs that come from distributions that closely follow its training data: we can output characters in brand new fonts. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

Image CompressionMachine LearningVision

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. An introduction to the variational autoencoder and our project

  2. Dataset visualization and preprocessing

  3. Dataset split into training and validation sets

  4. U​se data loaders to handle memory overload

  5. Create VAE architecture

  6. Create training loop for VAE

  7. R​esults of our model and short introduction to other potential projects using a VAE

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Avis

Meilleurs avis pour IMAGE COMPRESSION AND GENERATION USING VARIATIONAL AUTOENCODERS IN PYTHON

Voir tous les avis

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.