Generate Synthetic Images with DCGANs in Keras
241 évaluations

7 642 déjà inscrits
Understand Deep Convolutional Generative Adversarial Networks (DCGANs and GANs)
Design and train DCGANs using the Keras API in Python
241 évaluations
7 642 déjà inscrits
Understand Deep Convolutional Generative Adversarial Networks (DCGANs and GANs)
Design and train DCGANs using the Keras API in Python
In this hands-on project, you will learn about Generative Adversarial Networks (GANs) and you will build and train a Deep Convolutional GAN (DCGAN) with Keras to generate images of fashionable clothes. We will be using the Keras Sequential API with Tensorflow 2 as the backend. In our GAN setup, we want to be able to sample from a complex, high-dimensional training distribution of the Fashion MNIST images. However, there is no direct way to sample from this distribution. The solution is to sample from a simpler distribution, such as Gaussian noise. We want the model to use the power of neural networks to learn a transformation from the simple distribution directly to the training distribution that we care about. The GAN consists of two adversarial players: a discriminator and a generator. We’re going to train the two players jointly in a minimax game theoretic formulation. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Deep Learning
Machine Learning
Tensorflow
Computer Vision
keras
Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :
Project Overview and Import Libraries
Load and Preprocess the Data
Create Batches of Training Data
Build the Generator Network for DCGAN
Build the Discriminator Network for DCGAN
Compile the Deep Convolutional Generative Adversarial Network (DCGAN)
Define the Training Procedure
Train DCGAN
Generate Synthetic Images with DCGAN
Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.
Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé
par S
4 mai 2020This course helped me to start developing GANs. I would like to hear more theoretical explanations.
par SB
11 sept. 2020Nice choice to start with the understanding of GANs.
par PV
31 mai 2020The course was good but the cloud server had some issues initially but later that worked fine. Kudos to the Instructor!
par SS
5 août 2020I tried this project and it is really good if you want to have idea about GANs and DCGANs.
En achetant un Projet Guidé, vous obtenez tout ce dont vous avez besoin pour terminer ce Projet Guidé, y compris l'accès à un espace de travail de bureau cloud, via votre navigateur web, qui contient les fichiers et les logiciels dont vous avez besoin pour commencer, ainsi que les instructions vidéo étape par étape d'un expert en la matière.
Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.
Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.
À partir du Projet Guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.
Aucun remboursement n'est disponible pour les Projets Guidés. Consulter notre politique de remboursement complète.
Aucune aide financière n'est disponible pour les Projets Guidés.
L'audit n'est pas disponible pour les Projets Guidés.
En haut de la page, vous pouvez appuyer sur le niveau d'expérience de ce Projet Guidé pour afficher les connaissances requises. Pour chaque niveau de Projet Guidé, votre enseignant vous guidera étape par étape.
Oui, tout ce dont vous avez besoin pour terminer votre Projet Guidé sera présent sur un bureau cloud disponible dans votre navigateur.
Vous apprenez en effectuant des tâches dans un environnement à écran partagé, directement dans votre navigateur. Sur le côté gauche de l'écran, vous terminez la tâche dans votre espace de travail. Sur le côté droit de l'écran, vous voyez un(e) enseignant(e) qui vous guide tout au long du projet, étape par étape.
D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.