Facial Expression Recognition with Keras

845 évaluations
Offert par
Coursera Project Network
19,180 déjà inscrits
Dans ce projet guidé, vous :

Develop a facial expression recognition model in Keras

Build and train a convolutional neural network (CNN)

Deploy the trained model to a web interface with Flask

Apply the model to real-time video streams and image data

Clock2 hours
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

In this 2-hour long project-based course, you will build and train a convolutional neural network (CNN) in Keras from scratch to recognize facial expressions. The data consists of 48x48 pixel grayscale images of faces. The objective is to classify each face based on the emotion shown in the facial expression into one of seven categories (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral). You will use OpenCV to automatically detect faces in images and draw bounding boxes around them. Once you have trained, saved, and exported the CNN, you will directly serve the trained model to a web interface and perform real-time facial expression recognition on video and image data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

Deep LearningConvolutional Neural NetworkMachine LearningComputer Visionkeras

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

    Comment fonctionnent les projets guidés

    Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

    Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé




    Voir tous les avis

    Foire Aux Questions

    Foire Aux Questions

    D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.