Deploying a Pytorch Computer Vision Model API to Heroku

Offert par
Dans ce Projet Guidé, vous :

Build a PyTorch computer vision model REST API with Flask.

Deploy PyTorch computer vision model REST API to Heroku.

2 hours
Intermédiaire
Aucun téléchargement requis
Vidéo en écran partagé
Anglais
Ordinateur de bureau uniquement

Welcome to the “Deploying a Pytorch Computer Vision Model API to Heroku” guided project. Computer vision is one of the prominent fields of AI with numerous applications in the real world including self-driving cars, image recognition, and object tracking, among others. The ability to make models available for real-world use is an essential skill anyone interested in AI engineering should have especially for computer vision and this is why this project exists. In this project, we will deploy a Flask REST API using one of Pytorch's pre-trained computer vision image classification models. This API will be able to receive an image, inference the pre-trained model, and return its predicted classification. This project is an intermediate python project for anyone interested in learning about how to productionize Pytorch computer vision models in the real world via a REST API on Heroku. It requires preliminary knowledge on how to build and train PyTorch models (as we will not be building or training models), how to utilize Git and a fundamental understanding of REST APIs. Learners would also need a Heroku account and some familiarity with the Python Flask module and the Postman API Platform. At the end of this project, learners will have a publicly available API they can use to demonstrate their knowledge in deploying computer vision models.

Les compétences que vous développerez

  • Machine Learning

  • Python Programming

  • pytorch

  • Machine Learning Deployment

  • Computer Vision

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Import all the necessary libraries.

  2. Build a PyTorch computer vision model REST API with Flask.

  3. Build a simple flask web server.

  4. Test out PyTorch computer vision model REST API localhost end point.

  5. Deploy PyTorch computer vision model REST API to Heroku

  6. Test out PyTorch computer vision model REST API Heroku end point.

  7. Capstone Practice

Comment fonctionnent les Projets Guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions

En achetant un Projet Guidé, vous obtenez tout ce dont vous avez besoin pour terminer ce Projet Guidé, y compris l'accès à un espace de travail de bureau cloud, via votre navigateur web, qui contient les fichiers et les logiciels dont vous avez besoin pour commencer, ainsi que les instructions vidéo étape par étape d'un expert en la matière.

Comme votre espace de travail contient un bureau cloud dimensionné pour un ordinateur portable ou de bureau, les Projets Guidés ne sont pas disponibles sur votre appareil mobile.

Les enseignants des Projets Guidés sont des experts en la matière qui ont de l'expérience dans les compétences, les outils ou le domaine de leur projet et qui sont passionnés par le partage de leurs connaissances avec des millions d'étudiants dans le monde.

À partir du Projet Guidé, vous pouvez télécharger et conserver tout fichier que vous avez créé. Pour ce faire, vous pouvez utiliser la fonction « Navigateur de fichiers » pendant que vous accédez à votre bureau cloud.

Aucun remboursement n'est disponible pour les Projets Guidés. Consulter notre politique de remboursement complète.

Aucune aide financière n'est disponible pour les Projets Guidés.

L'audit n'est pas disponible pour les Projets Guidés.

En haut de la page, vous pouvez appuyer sur le niveau d'expérience de ce Projet Guidé pour afficher les connaissances requises. Pour chaque niveau de Projet Guidé, votre enseignant vous guidera étape par étape.

Oui, tout ce dont vous avez besoin pour terminer votre Projet Guidé sera présent sur un bureau cloud disponible dans votre navigateur.

Vous apprenez en effectuant des tâches dans un environnement à écran partagé, directement dans votre navigateur. Sur le côté gauche de l'écran, vous terminez la tâche dans votre espace de travail. Sur le côté droit de l'écran, vous voyez un(e) enseignant(e) qui vous guide tout au long du projet, étape par étape.