Introduction to Customer Segmentation in Python

4.6
étoiles
13 évaluations
Offert par
Coursera Project Network
Dans ce Projet Guidé, vous :

Dimensionality Reduction using standard PCA and variants

Create interactive plots

Clustering data using K-Means with evaluation metrics

Clock2 hours
BeginnerDébutant
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

In this 2 hour long project, you will learn how to approach a customer purchase dataset, and how to explore the intricacies of such a dataset. You will learn the basic underlying ideas behind Principal Component Analysis, Kernel Principal Component Analysis, and K-Means Clustering. You will learn how to leverage these concepts, paired with industry knowledge and auxiliary modeling concepts to segment the customers of a certain store, and find similarities and differences between different clusters using unsupervised machine learning techniques. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

  • Dimensionality Reduction
  • Market Segmentation
  • Machine Learning
  • clustering

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Introduction to the task and demo

  2. Exploratory Data Analysis

  3. Principal Component Analysis

  4. Kernel Principal Component Analysis

  5. K-Means Clustering

  6. Interactive Cluster Analysis

Comment fonctionnent les Projets Guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Étudiants.