Classify Radio Signals from Space using Keras

4.5
étoiles
215 évaluations
Offert par
Coursera Project Network
5,155 déjà inscrits
Dans ce projet guidé, vous :

Build and train a convolutional neural network (CNN) using Keras

Display results and plot 2D spectrograms with Python in Jupyter Notebook

Clock1.5 hours
IntermediateIntermédiaire
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

In this 1-hour long project-based course, you will learn the basics of using Keras with TensorFlow as its backend and use it to solve an image classification problem. The data we are going to use consists of 2D spectrograms of deep space radio signals collected by the Allen Telescope Array at the SETI Institute. We will treat the spectrograms as images to train an image classification model to classify the signals into one of four classes. By the end of the project, you will have built and trained a convolutional neural network from scratch using Keras to classify signals from space. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Tensorflow pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

Deep LearningConvolutional Neural NetworkMachine LearningTensorflowkeras

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Introduction and Import Libraries

  2. Load and Preprocess SETI Data

  3. Create Training and Validation Data Generators

  4. Build the CNN Model

  5. Learning Rate Scheduling and Compile the Model

  6. Train the Model

  7. Evaluate the Model

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Enseignant

Avis

Meilleurs avis pour CLASSIFY RADIO SIGNALS FROM SPACE USING KERAS

Voir tous les avis

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.