Anomaly Detection in Time Series Data with Keras

4.2
étoiles
179 évaluations
Offert par
Coursera Project Network
6,334 déjà inscrits
Dans ce projet guidé, vous :

Build an LSTM Autoencoder in Keras

Detect anomalies with Autoencoders in time series data

Create interactive charts and plots with Plotly and Seaborn

Clock1.5 hours
IntermediateIntermédiaire
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

In this hands-on introduction to anomaly detection in time series data with Keras, you and I will build an anomaly detection model using deep learning. Specifically, we will be designing and training an LSTM autoencoder using the Keras API with Tensorflow 2 as the backend to detect anomalies (sudden price changes) in the S&P 500 index. We will also create interactive charts and plots using Plotly Python and Seaborn for data visualization and display our results in Jupyter notebooks. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Les compétences que vous développerez

Deep LearningMachine LearningData Visualization (DataViz)Anomaly Detectionkeras

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Project Overview and Import Libraries

  2. Load and Inspect the S&P 500 Index Data

  3. Data Preprocessing

  4. Temporalize Data and Create Training and Test Splits

  5. Build an LSTM Autoencoder

  6. Train the Autoencoder

  7. Plot Metrics and Evaluate the Model

  8. Detect Anomalies in the S&P 500 Index Data

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Enseignant

Avis

Meilleurs avis pour ANOMALY DETECTION IN TIME SERIES DATA WITH KERAS

Voir tous les avis

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.