Analyze Survey Data using Principal Component Analysis

4.0
étoiles
18 évaluations
Offert par
Coursera Project Network
Dans ce Projet guidé gratuit, vous :

Understand the fundamentals of Principal Component Analysis (PCA) and identify opportunities to combine variables.

Conduct correlation testing with various sets of variables in Google Sheets.

Combine highly correlated variables, visualize the data, and consider next steps in Google Sheets.

Showcase this hands-on experience in an interview

Clock2 hours
AdvancedAvancées
CloudAucun téléchargement requis
VideoVidéo en écran partagé
Comment DotsAnglais
LaptopOrdinateur de bureau uniquement

Survey data sets are often deceptively complex because surveys collect a wide variety of data covering a wide variety of topics and experiences. To further the complexity of survey data, the respondents answering the questions come from a wide variety of backgrounds and stages in their customer journey. It is reasonable that it would be a challenge to boil down survey data into actionable insights because it can be deceptively complex. With large sets of data, Principal Component Analysis or PCA is a useful tool that reduces and transforms variables to a leaner form that allows for a speedier analysis. In this project you will gain hands-on experience with the principles of Principal Component Analysis using survey data. To do this you will work in the free-to-use spreadsheet software Google Sheets. By the end of this project, you will be able to confidently apply Principal Component Analysis concepts to transform large sets of variables into a leaner set of data that still contains the most relevant information. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Conditions

Familiarity with spreadsheet software, factor analysis, and correlation testing. "Design a Factor Analysis Using Survey Data" is recommended.

Les compétences que vous développerez

Survey MethodologyMining InsightsBusiness InsightsData AnalysisPrincipal Component Analysis (PCA)

Apprendrez étape par étape

Votre enseignant(e) vous guidera étape par étape, grâce à une vidéo en écran partagé sur votre espace de travail :

  1. Review the fundamentals of Principal Component Analysis (PCA) and combining variables.

  2. Identify use cases for PCA and refine variable selection for the project.

  3. Access Google Sheets, import survey data, and examine variables that are likely correlated.

  4. Conduct correlation testing with various sets of variables.

  5. Combine highly correlated variables, create a visualization, and consider next steps.

Comment fonctionnent les projets guidés

Votre espace de travail est un bureau cloud situé dans votre navigateur, aucun téléchargement n'est requis.

Votre enseignant(e) vous guide étape par étape dans une vidéo en écran partagé

Enseignant

Avis

Meilleurs avis pour ANALYZE SURVEY DATA USING PRINCIPAL COMPONENT ANALYSIS

Voir tous les avis

Foire Aux Questions

Foire Aux Questions

D'autres questions ? Visitez le Centre d'Aide pour les Etudiants.