Spatial (map) is considered as a core infrastructure of modern IT world, which is substantiated by business transactions of major IT companies such as Apple, Google, Microsoft, Amazon, Intel, and Uber, and even motor companies such as Audi, BMW, and Mercedes. Consequently, they are bound to hire more and more spatial data scientists. Based on such business trend, this course is designed to present a firm understanding of spatial data science to the learners, who would have a basic knowledge of data science and data analysis, and eventually to make their expertise differentiated from other nominal data scientists and data analysts. Additionally, this course could make learners realize the value of spatial big data and the power of open source software's to deal with spatial data science problems.
This course will start with defining spatial data science and answering why spatial is special from three different perspectives - business, technology, and data in the first week. In the second week, four disciplines related to spatial data science - GIS, DBMS, Data Analytics, and Big Data Systems, and the related open source software's - QGIS, PostgreSQL, PostGIS, R, and Hadoop tools are introduced together. During the third, fourth, and fifth weeks, you will learn the four disciplines one by one from the principle to applications. In the final week, five real world problems and the corresponding solutions are presented with step-by-step procedures in environment of open source software's.

À partir de la leçon

Understanding Spatial Data Science

The first module of "Spatial Data Science and Applications" is entitled to "Understanding of Spatial Data Science." This module is composed of four lectures. The first lecture "Introduction to spatial data science" was designed to give learners a solid concept of spatial data science in comparison with science, data science, and spatial data science. For Learner's better understanding, examples of spatial data science problems are also presented. The second, third, and fourth lectures focuses on "what is spatial special? - unique aspects of spatial data science from three perspectives of business, technology, and data, respectively. In the second lecture, learners will learn five reasons why major IT companies are serious about spatial data, in other words, maps. The third lecture will allow learners to understand four issues of dealing with spatial data, including DBMS problems, topology, spatial indexing, and spatial big data problems. The fourth lecture will allow learners to understand another four issues of spatial data including spatial autocorrelation, map projection, uncertainty, and modifiable areal unit problem.