Regression ML block diagram

Our course starts from the most basic regression model: Just fitting a line to data. This simple model for forming predictions from a single, univariate feature of the data is appropriately called "simple linear regression".<p> In this module, we describe the high-level regression task and then specialize these concepts to the simple linear regression case. You will learn how to formulate a simple regression model and fit the model to data using both a closed-form solution as well as an iterative optimization algorithm called gradient descent. Based on this fitted function, you will interpret the estimated model parameters and form predictions. You will also analyze the sensitivity of your fit to outlying observations.<p> You will examine all of these concepts in the context of a case study of predicting house prices from the square feet of the house.

À propos de Coursera

Cours, Spécialisations et Diplômes en ligne enseignés par des enseignants du plus haut niveau provenant des meilleurs universités et établissements d'enseignement du monde.

Join a community of 40 million learners from around the world
Earn a skill-based course certificate to apply your knowledge
Gain confidence in your skills and further your career