Computing coefficient of each ensemble component

Course video 90 of 121

One of the most exciting theoretical questions that have been asked about machine learning is whether simple classifiers can be combined into a highly accurate ensemble. This question lead to the developing of boosting, one of the most important and practical techniques in machine learning today. This simple approach can boost the accuracy of any classifier, and is widely used in practice, e.g., it's used by more than half of the teams who win the Kaggle machine learning competitions. In this module, you will first define the ensemble classifier, where multiple models vote on the best prediction. You will then explore a boosting algorithm called AdaBoost, which provides a great approach for boosting classifiers. Through visualizations, you will become familiar with many of the practical aspects of this techniques. You will create your very own implementation of AdaBoost, from scratch, and use it to boost the performance of your loan risk predictor on real data.

À propos de Coursera

Cours, Spécialisations et Diplômes en ligne enseignés par des enseignants du plus haut niveau provenant des meilleurs universités et établissements d'enseignement du monde.

Join a community of 40 million learners from around the world
Earn a skill-based course certificate to apply your knowledge
Gain confidence in your skills and further your career