There is a perceived barrier to mathematics: proofs. In this course we will try to convince you that this barrier is more frightening than prohibitive: most proofs are easy to understand if explained correctly, and often they are even fun. We provide an accompanied excursion in the “proof zoo” showing you examples of techniques of different kind applied to different topics.
We use some puzzles as examples, not because they are “practical”, but because discussing them we learn important reasoning and problem solving techniques that are useful. We hope you enjoy playing with the puzzles and inventing/understandings the proofs.
As prerequisites we assume only basic math (e.g., we expect you to know what is a square or how to add fractions), basic programming in python (functions, loops, recursion), common sense and curiosity. Our intended audience are all people that work or plan to work in IT, starting from motivated high school students.

À partir de la leçon

Why proofs?

What is a proof? Why do we care about proofs? Are the boring long tedious arguments usually known as `mathematical proofs' really needed outside the tiny circle of useless theoreticians that pray something called `mathematical rigor'? In this course we will try to show that proofs can be simple, elegant, convincing, useful and (don't laugh) exciting. Later we will try to show different proof techniques and tools, but first of all we should break the barrier and see that yes, one can understand a proof and one can enjoy the proof. We start with simple puzzles where one small remark can disclose "what really happens there" and then the proof becomes almost obvious.