Chevron Left
Retour à Statistics for Data Science with Python

Avis et commentaires pour d'étudiants pour Statistics for Data Science with Python par Réseau de compétences IBM

4.6
étoiles
263 évaluations

À propos du cours

This Statistics for Data Science course is designed to introduce you to the basic principles of statistical methods and procedures used for data analysis. After completing this course you will have practical knowledge of crucial topics in statistics including - data gathering, summarizing data using descriptive statistics, displaying and visualizing data, examining relationships between variables, probability distributions, expected values, hypothesis testing, introduction to ANOVA (analysis of variance), regression and correlation analysis. You will take a hands-on approach to statistical analysis using Python and Jupyter Notebooks – the tools of choice for Data Scientists and Data Analysts. At the end of the course, you will complete a project to apply various concepts in the course to a Data Science problem involving a real-life inspired scenario and demonstrate an understanding of the foundational statistical thinking and reasoning. The focus is on developing a clear understanding of the different approaches for different data types, developing an intuitive understanding, making appropriate assessments of the proposed methods, using Python to analyze our data, and interpreting the output accurately. This course is suitable for a variety of professionals and students intending to start their journey in data and statistics-driven roles such as Data Scientists, Data Analysts, Business Analysts, Statisticians, and Researchers. It does not require any computer science or statistics background. We strongly recommend taking the Python for Data Science course before starting this course to get familiar with the Python programming language, Jupyter notebooks, and libraries. An optional refresher on Python is also provided. After completing this course, a learner will be able to: ✔Calculate and apply measures of central tendency and measures of dispersion to grouped and ungrouped data. ✔Summarize, present, and visualize data in a way that is clear, concise, and provides a practical insight for non-statisticians needing the results. ✔Identify appropriate hypothesis tests to use for common data sets. ✔Conduct hypothesis tests, correlation tests, and regression analysis. ✔Demonstrate proficiency in statistical analysis using Python and Jupyter Notebooks....

Meilleurs avis

JL

19 janv. 2021

The final assignment is very well designed, I was able to review the entire course material and consolidate the learning. I have now a good understanding of hypothesis testing.

HD

13 janv. 2021

A well structured course, simple and direct to the point, with a little of exercising you'll come out with a huge understanding of the statistical concepts.

Filtrer par :

26 - 50 sur 61 Avis pour Statistics for Data Science with Python

par S. H M

2 déc. 2022

par Muhammad F H

2 sept. 2021

par k b

7 févr. 2021

par Kalyani A

10 juin 2022

par Asif Y

13 janv. 2021

par Frederico S

2 juin 2022

par Khusan T

30 mars 2021

par Adedeji Y

10 oct. 2022

par Vaseekaran V

13 mai 2021

par AGUNG P

20 oct. 2022

par HAFED-EDDINE B

15 déc. 2021

par Sunny .

1 avr. 2021

par 佐藤淳一

29 janv. 2021

par vijay k A

23 juin 2021

par Ankit G

15 avr. 2022

par Akhas R

20 mars 2021

par Ume K

29 oct. 2022

par Md. A I

15 mars 2022

par ALEXANDRE R P

17 mars 2022

par Htet A L T

16 juil. 2021

par Usama G

13 juin 2022

par André J A

22 juil. 2021

par Deleted A

4 avr. 2022

par George P

18 avr. 2022

par Klemen V

23 avr. 2021