Курс посвящен статистическому сравнению характеристик групп и категорий.
В первой части курса мы рассказываем о параметрических и непараметрических тестах сравнения средних и распределений, какие возможности и ограничения связаны с разными методами сравнения групп, говорим о сравнении связанных и несвязанных выборок. Различаются ли регионы (или аудитории) по доходу или возрасту? Как отличается пользовательская активность в разные времена года? Случайны различия между группами или закономерны?
Курс научит искать ответы на такие вопросы.
Вторая половина курсов посвящена выделению групп на основе эмпирических данных. Есть ли структура в данных? Можно ли говорить о том, что люди, компании или университеты группируются в отличительные, узнаваемые классы? Как найти и охарактеризовать такие группы? Мы покажем основные алгоритмы кластеризации, которые позволяют решать такие задачи.
В практических видео курса мы покажем реализацию основных инструментов сравнения и выделения групп, а также предложим практические задачи и задания для отработки полученных навыков.
À partir de la leçon
Введение в кластерный анализ
В третьем модуле курса мы поговорим о методах выделения групп. Если до этого мы сравнивали группы, которые уже были нам известны, то во второй половине курса мы будем говорить о том, как обнаружить группы в данных, как их выделить, охарактеризовать, и что можно делать с построенной классификацией дальше. Основной фокус модуля - агломеративные методы классификации. В заключении, как всегда, практика на реальных данных.