Chevron Left
Retour à Big Data Analysis with Scala and Spark

Avis et commentaires pour d'étudiants pour Big Data Analysis with Scala and Spark par École polytechnique fédérale de Lausanne

2,551 évaluations

À propos du cours

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming:

Meilleurs avis


7 juin 2017

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!


28 nov. 2019

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

Filtrer par :

251 - 275 sur 506 Avis pour Big Data Analysis with Scala and Spark

par Devaki B

15 avr. 2017

par Harshad H

30 oct. 2019

par David F S

14 janv. 2019

par Husain K

7 mai 2017

par samy k

21 mars 2017

par Robert M

11 févr. 2019

par shubham m

10 juil. 2018

par abdhesh

31 déc. 2017

par Jeroen M

9 avr. 2017

par Hong C

14 avr. 2020

par Denis L

5 déc. 2018

par Wang Z

30 oct. 2019

par Muhammad B

10 juin 2020

par Arnaud J

2 juin 2017

par Daniel D

20 avr. 2017

par Olivier L

29 nov. 2019

par Marc K

8 sept. 2018

par Joaquin D R

25 sept. 2019

par jiajie

8 juil. 2017

par César A

29 mars 2017

par Hari K N

22 juil. 2020

par Varlamova E

10 mars 2019

par Msellek A

26 janv. 2019

par Jose M N

28 mai 2018

par Srinivasa R M

13 sept. 2017