Chevron Left
Retour à Big Data Analysis with Scala and Spark

Avis et commentaires pour d'étudiants pour Big Data Analysis with Scala and Spark par École polytechnique fédérale de Lausanne

4.6
étoiles
2,565 évaluations

À propos du cours

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

Meilleurs avis

BP

28 nov. 2019

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

CC

7 juin 2017

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

Filtrer par :

451 - 475 sur 507 Avis pour Big Data Analysis with Scala and Spark

par Javier L B

7 déc. 2021

par Stéphane L

13 oct. 2017

par Srinivasu N

15 mai 2020

par Devaraja K R

14 nov. 2018

par Jim N

12 avr. 2017

par Giovanni F

20 févr. 2021

par Harold O

16 avr. 2017

par Tom C

5 avr. 2017

par Alexei M

19 avr. 2017

par Sam Z

3 mai 2017

par Horia R

5 avr. 2017

par Allen S

11 juil. 2017

par Rob S

15 oct. 2018

par Luis V

30 sept. 2017

par Jeff B

5 juil. 2017

par Vesa P

2 juil. 2017

par Waqas A

15 nov. 2020

par Lance F

27 mars 2017

par Aaron S

4 juin 2017

par Rafael G

31 mars 2017

par Korbinian K

10 oct. 2017

par Andre H

5 août 2017

par Jeni

29 nov. 2019

par Alexandre V

25 nov. 2017

par Daniel Z

14 mars 2020