Chevron Left
Retour à Programmation parallèle

Avis et commentaires pour d'étudiants pour Programmation parallèle par École polytechnique fédérale de Lausanne

1,819 évaluations

À propos du cours

With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn the fundamentals of parallel programming, from task parallelism to data parallelism. In particular, you'll see how many familiar ideas from functional programming map perfectly to to the data parallel paradigm. We'll start the nuts and bolts how to effectively parallelize familiar collections operations, and we'll build up to parallel collections, a production-ready data parallel collections library available in the Scala standard library. Throughout, we'll apply these concepts through several hands-on examples that analyze real-world data, such as popular algorithms like k-means clustering. Learning Outcomes. By the end of this course you will be able to: - reason about task and data parallel programs, - express common algorithms in a functional style and solve them in parallel, - competently microbenchmark parallel code, - write programs that effectively use parallel collections to achieve performance Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Functional Program Design in Scala:

Meilleurs avis


23 avr. 2018

The course is fairly advanced and you would need to review the materials many times to understand the concept. The assignments are definitely fun and not as straightforward as other courses.


24 août 2017

Superb study material. Learnt a lot during this course. I am not much into mathematical stuff, but got a hang of how to break problems and improve efficiency through parallelism.

Filtrer par :

126 - 150 sur 269 Avis pour Programmation parallèle

par Jakub T m G

27 juin 2017

par Gian U L

5 sept. 2016

par Yevgeny E

22 avr. 2022

par Jose M N

25 avr. 2018

par Mykola S

22 juil. 2017

par Kovalenko S

20 juil. 2017

par Hulevskyi D

20 juin 2016

par Laerti P

25 avr. 2017

par Gao Y

14 févr. 2017

par Владислав С

23 nov. 2020

par G. U M

24 août 2019


12 févr. 2018

par Animesh K

9 août 2017

par Leonardo C

21 juin 2019

par Sanjeev R

26 août 2019

par Bjornn B O F F

27 juin 2017


3 août 2017

par Deleted A

28 mai 2016

par Kevin L

8 déc. 2020

par Oleksandr I

21 mai 2017

par Sriram K

31 oct. 2016

par Hristo I

1 nov. 2016

par Daniel B

9 oct. 2019

par P G

1 nov. 2017

par Gabriele A

30 oct. 2019