Chevron Left
Retour à Programmation parallèle

Avis et commentaires pour d'étudiants pour Programmation parallèle par École polytechnique fédérale de Lausanne

1,819 évaluations

À propos du cours

With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn the fundamentals of parallel programming, from task parallelism to data parallelism. In particular, you'll see how many familiar ideas from functional programming map perfectly to to the data parallel paradigm. We'll start the nuts and bolts how to effectively parallelize familiar collections operations, and we'll build up to parallel collections, a production-ready data parallel collections library available in the Scala standard library. Throughout, we'll apply these concepts through several hands-on examples that analyze real-world data, such as popular algorithms like k-means clustering. Learning Outcomes. By the end of this course you will be able to: - reason about task and data parallel programs, - express common algorithms in a functional style and solve them in parallel, - competently microbenchmark parallel code, - write programs that effectively use parallel collections to achieve performance Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Functional Program Design in Scala:

Meilleurs avis


23 avr. 2018

The course is fairly advanced and you would need to review the materials many times to understand the concept. The assignments are definitely fun and not as straightforward as other courses.


24 août 2017

Superb study material. Learnt a lot during this course. I am not much into mathematical stuff, but got a hang of how to break problems and improve efficiency through parallelism.

Filtrer par :

76 - 100 sur 269 Avis pour Programmation parallèle

par Srdjan K

25 oct. 2016

par Artur R

24 mai 2018

par Alexandr M

30 mai 2017

par Richard Q

23 juil. 2016

par 李帅

29 avr. 2019

par Jose R

28 sept. 2016

par Dmitriy B

8 août 2017

par Konstantin S

7 juil. 2016

par yassine a

13 nov. 2017

par Sudipto C

30 juin 2020

par Jaeyeol S

13 sept. 2016

par joe

22 janv. 2017

par Hyun-joo K

26 juin 2016

par Sviridenko K

26 mars 2019

par Marek D

2 août 2016

par Andronik

31 juil. 2016

par Eugene K

16 févr. 2017

par Fernando

6 juin 2018

par Shiyan C

25 mars 2018

par Emiliyan T

9 avr. 2017

par Roman M

23 juin 2016

par hcy

14 mars 2017

par Mike D

3 nov. 2016

par Vikram K

29 juin 2016

par Esa A

11 avr. 2022