Chevron Left
Retour à Programmation parallèle

Avis et commentaires pour d'étudiants pour Programmation parallèle par École polytechnique fédérale de Lausanne

1,819 évaluations

À propos du cours

With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn the fundamentals of parallel programming, from task parallelism to data parallelism. In particular, you'll see how many familiar ideas from functional programming map perfectly to to the data parallel paradigm. We'll start the nuts and bolts how to effectively parallelize familiar collections operations, and we'll build up to parallel collections, a production-ready data parallel collections library available in the Scala standard library. Throughout, we'll apply these concepts through several hands-on examples that analyze real-world data, such as popular algorithms like k-means clustering. Learning Outcomes. By the end of this course you will be able to: - reason about task and data parallel programs, - express common algorithms in a functional style and solve them in parallel, - competently microbenchmark parallel code, - write programs that effectively use parallel collections to achieve performance Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Functional Program Design in Scala:

Meilleurs avis


23 avr. 2018

The course is fairly advanced and you would need to review the materials many times to understand the concept. The assignments are definitely fun and not as straightforward as other courses.


24 août 2017

Superb study material. Learnt a lot during this course. I am not much into mathematical stuff, but got a hang of how to break problems and improve efficiency through parallelism.

Filtrer par :

26 - 50 sur 269 Avis pour Programmation parallèle

par Ivan S

11 mars 2018

par Vikram B

5 févr. 2021

par Matthew H

20 nov. 2016

par Aliaksandr P

16 juil. 2016

par Krishna A

12 juin 2017

par Lyman H

22 janv. 2021

par Santiago A

30 juil. 2019

par Артем К

15 oct. 2017

par Ignacio G S

24 mai 2021

par Evgeny P

13 nov. 2016

par Stanislav T

26 juin 2018

par Roman

29 juil. 2016

par Anton M

5 avr. 2020

par Nicolas D

31 août 2016

par William H

13 août 2017

par Török E

4 janv. 2017

par Jong H S

19 août 2017

par Ashvin L

24 avr. 2018

par ravi c

25 août 2017

par viktor o

19 déc. 2016

par Eric L

14 août 2016

par Wiktor D

23 sept. 2016

par Korntewin B

27 janv. 2021

par Tony H

4 oct. 2017

par Aleksander S

18 nov. 2017