Chevron Left
Retour à Programmation parallèle

Avis et commentaires pour d'étudiants pour Programmation parallèle par École polytechnique fédérale de Lausanne

1,819 évaluations

À propos du cours

With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn the fundamentals of parallel programming, from task parallelism to data parallelism. In particular, you'll see how many familiar ideas from functional programming map perfectly to to the data parallel paradigm. We'll start the nuts and bolts how to effectively parallelize familiar collections operations, and we'll build up to parallel collections, a production-ready data parallel collections library available in the Scala standard library. Throughout, we'll apply these concepts through several hands-on examples that analyze real-world data, such as popular algorithms like k-means clustering. Learning Outcomes. By the end of this course you will be able to: - reason about task and data parallel programs, - express common algorithms in a functional style and solve them in parallel, - competently microbenchmark parallel code, - write programs that effectively use parallel collections to achieve performance Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Functional Program Design in Scala:

Meilleurs avis


23 avr. 2018

The course is fairly advanced and you would need to review the materials many times to understand the concept. The assignments are definitely fun and not as straightforward as other courses.


24 août 2017

Superb study material. Learnt a lot during this course. I am not much into mathematical stuff, but got a hang of how to break problems and improve efficiency through parallelism.

Filtrer par :

176 - 200 sur 269 Avis pour Programmation parallèle

par Martin K

22 juin 2016

par Steve N

5 juil. 2020

par Yihan S

17 mai 2017

par Rodrigo D

1 avr. 2017

par Du L

2 juin 2018

par Gregory E

29 mars 2018

par Benoit P D

20 déc. 2016

par Tim G

22 oct. 2017

par Erkin U

7 oct. 2016

par Rahul W

11 déc. 2016

par Роман В

2 juin 2018

par Solodovnikov G

17 sept. 2016

par Zhenduo D

14 nov. 2017

par Enrique G R

19 août 2017

par Pascal A

23 sept. 2016

par Romain G

28 juil. 2017

par Steven T

26 sept. 2016

par Alan A

6 oct. 2019

par Ville M

22 juin 2020

par joshua

9 juin 2017

par Carlos C B

6 avr. 2017

par Adianto W

24 oct. 2016

par Marc K

9 avr. 2018

par Shuo Z

27 juin 2016

par Nikola P

1 nov. 2016