Retour à Python and Statistics for Financial Analysis

étoiles

2,814 évaluations

•

622 avis

Course Overview: https://youtu.be/JgFV5qzAYno
Python is now becoming the number 1 programming language for data science. Due to python’s simplicity and high readability, it is gaining its importance in the financial industry. The course combines both python coding and statistical concepts and applies into analyzing financial data, such as stock data.
By the end of the course, you can achieve the following using python:
- Import, pre-process, save and visualize financial data into pandas Dataframe
- Manipulate the existing financial data by generating new variables using multiple columns
- Recall and apply the important statistical concepts (random variable, frequency, distribution, population and sample, confidence interval, linear regression, etc. ) into financial contexts
- Build a trading model using multiple linear regression model
- Evaluate the performance of the trading model using different investment indicators
Jupyter Notebook environment is configured in the course platform for practicing python coding without installing any client applications....

GZ

25 mars 2020

Very clear explaining of the significant aspects when structuring a financial analysis, applicable in many forms of data if you don't want to make predictions only for the stock market.

PL

7 avr. 2021

An excellent beginner's guide to financial statistics using Python's Pandas module. Can be completed very quickly by those familiar with both basic Python and introductory Statistics.

Filtrer par :

par Claudio H

•21 avr. 2020

A fine introduction to the use of statistical models for finance (stock trading), showing its implementation in Python. It is NOT a course in either Python or Statistics but shows what one should learn. Alas, it does not give any pointers as to where to go to delve deeper into the needed statistics (nor trading, for that matter). It contains a fair summary explanation of linear regression models, but the recipes for their evaluation are discussed way too briefly.As for Python, it uses 4 common important libraries and directs the student to the corresponding sites. It gives no explanations as to the kind of structures being manipulated. The Jupyter notebooks are well set-up for practice.

par Kushagra S

•21 mai 2020

The course provides an overview of how to build a quantitative trading model. However, the instructor does not go into details while either introducing python functions to someone unfamiliar with the language or talking about statistical concepts. I could follow the code based on my background in other programming languages.I will be following up this course with other courses that go in depth on both the programming and statistics front.The Jupyter notebooks are quite helpful and I will be using them for future reference.3.5 would probably be a more honest rating of the course but I don't think the course could have taught the learner more given its length.

par Brandon B

•8 sept. 2020

This course shares a lot of info on how to use statistical analysis formulas like RMS, p-value, std. deviation, etc., and how to apply this knowledge using data modeling in a really easy way. There are some small hurdles to get over when taking the quizzes as some of the answers can be interpreted in multiple ways. out of the 4 quizzes I took, i attempted at least all of them 2 to 3 times. Not sure if I failed to absorb the knowledge well or if the goal was to go back and review the course material with a finer comb, either way, I found the course helpful and useful. I'd recommend it to friends and colleagues.

par Matthias H

•14 mai 2020

Good for what it intends to provide, namely a quick introduction to the topic, but it doesn't go very deep.

It is slightly annoying that there are plenty of typos and grammatical mistakes all over the Python code and the quizzes, which could easily have been avoided if either the author had somebody proofread everything quickly, or if Coursera had any type of quality control.

Nevertheless, coming from another programming language, I did get out of this course what I wanted, namely a collection of all the basic Python commands for this kind of analysis. So thank you for providing this course!

par JY M

•2 mars 2020

In general a satisfactory course and not too to follow through. It is focused more on the stat side than finance which I kinda have a mixed feeling toward. Professor could probably have done a little better job on explaining the meanings behind the formula but for the most part it is not hard to figure it out yourself by searching or reviewing the materials a few times by oneself. I also feel this course is a bit short, and if in the future it can try to cover more topics that will be awesome.

But hey I did learn stuff and am happy to have taken this.

par 周伟涛

•24 juil. 2021

First of all, I want to thank professor Xuhu Wan, as i have benefited a lot from the course, which not only broadens my knowledge of statistics, but also helps me familiarize with practical application of python. Overall, this is a well-organized, inspiring course worth recommendation, although it would be better if the pace is a bit slower and the explanation of the code is more detailed and thorough. I believe this course helps build my python skills in financial analysis, and hopefully this experience can help me earn my PHD offer.

par Masaki S

•22 oct. 2020

This is an awesome course which takes you through the statistics for the financial analysis. The course needs some update to correct some broken links, inconsistencies. It requires some basic knowledge of statistics and python programming beforehand or study of these topics alongside this course, which should be made obvious to some learners who may be puzzled (I see in the forum that several learners were quite upset about some difference in expectation vs the reality which I think could be narrowed down).

par Gonzalo A j

•26 nov. 2020

Es interesante, muchos comandos y cuestiones teóricas de los últimos temas se explican rápido y sin profundizar. He aprendido y revisado conceptos que ya sabía. Me queda la duda de como afecta el margen de la oferta y demanda al proceso de evaluar estrategias financieras. El uso de Python simplemente es una herramienta para explicar conceptos, no se aprende realmente a programar, aun así en la mayoría de casos es fácilmente entendible ya que todo sigue un razonamiento lógico.

par camillo s

•6 sept. 2020

The course was indeed helpful for my main goal to improve my skills using Python libraries to carry out mathematical / statistical caclulations.

One minor issue:

As I downloaded the notebooks for replaying them in my local Jupyter installation which is based on Python >= 3.6, I had to manually correct some statements due to changes in pandas, e.g.

pd.DataFrame.from_csv -> pd.read:csv or

pandas.tools.plotting -> pandas.plotting

mho it would be good to check for such issues

par Heung K Y

•5 mai 2020

This course is more suitable for someone who has basic python knowledge. understand that there is a challenge with teaching programming languages via online platforms. It is quite difficult for the instructor to shorten the whole course into 4weeks material. Appreciate that the instructor and TA do spend time to answer student’s questions in the coursera forum. Candidate needs to spend extra time to view other sources to better understand the course material.

par Saikat C

•22 juil. 2021

Thank you for your effort sir, I am grateful. Unfortunately, the refer links used in the quizes did not work for me, I lost a few points because of that. I am an electrical engineering student, I do not know much about statistics or finance, but I am familiar with python. I had to do a little research on the terms directly related to those subjects like quantiles, covariance, p value etc. But, you did introduce me to a lot of new things in that way.

par RICHARD D

•22 févr. 2021

Exactly the Course right for me, Very usefull codes and Analysis used in this Course. Only that am the code used was Pyuthon 2 and some of the codes are OLD, It will be good to update the Cousre Cataloge and Modinized some of the Codes Used. This Course should be updated and add additional Courses to makeup a Proffesional Certificate that will prepare students Financial Analysis Position. The Course was very Usefull for me.

par Tristan H

•31 mars 2020

A wonderful course to get an introduction into financial statistics and a few python basics. This helped me understand many things about prediction and trading strategies. However to truly understand how to code a financial trading strategy you will need a lot more practice than you get in this course.

I really liked the course and would recommend it to anyone who wants to learn more about financial trading and python!

par Abderrezak L

•7 mai 2020

-: some little mystakes, exercice level very low

+: large présentation that provide both python and core financial statistics skill within high level

Might need more time than expected, maybe twice, in order to code the exercice meanwhile watching the video. Cause the final exercice for each week consists just in changing some value. Not enough to know about coding. Except if you already properly know Python

par Rachel E

•20 sept. 2021

Covered a lot of good content ultimately but the pace was slow and basic content in week one and progressed to very intense by week 4, felt more time should have been given to the week 4 stuff.
A lot more emphasis given towards checking models/ best fits than necessarily building them.
Also a few issues with subtitles, and confusing quiz questions that didn`t always match to the workbooks given.`

par Marc C

•23 déc. 2020

Great course overall. I've found that the learning curve and pace of the topics explained increases too fast on the last chapter. In my opinion, the last chapter (which I thought would be the most interesting and practical) was a bit fast and you get the feeling that was done in a hurry.

Great to gain tools to analyze data and financial/statistical techniques useful for any field.

par Dan S

•5 mai 2020

This course is a good starter for you to apply financial analysis by using Statistics models with Python programming. If you have experiments in either programming or statistics, you will find lessons are quite easy to understand. I recommend classmates could take a look at some python plugins such as flask, yfinance. They are wonderful tools for further study.

par Varun S

•8 mai 2020

The course was helpful and definitely interesting. The only problem I found was that a lot of pre-existing knowledge was required and I had luckily studied some of it but the course did not cover it, It would also be helpful to add more indicators to show what each variable stands for in the formula since I found myself forgetting and had to rewind.

par Emile v M

•8 févr. 2021

Very good introduction in Financial Analysis using Python. In week 1 through 3 all concept are explained very clear, week 4, the most important week, is a lot of information in only a few video's. I wish these week was extended so these concepts could be explained with the same thoroughness as week 1 to 3. Overall I enjoyed the classes very much.

par Yashus G

•10 juin 2020

The course provides a very good learning experience. The course explains the various statistics that go into evaluation of stock data and further its execution using Python. The explanations could be bettered as there were many instances where pronunciations could not be comprehended. Overall the course provides a good learning experience!

par PUREUM W

•30 juin 2019

전공이 금웅공학이나 금융분야는 아니지만 관심이 많아 찾아보던중 이 강의를 들어보았습니다. 결과적으로 말씀드리면 이 강의는 대학교의 명성만큼 어느정도 수준이 높은 강의이며, 기초지식으로 파이썬과 통계학을 요구합니다. 저같은 경우, 전공이 IT여서 파이썬과 통계학을 배웠음에도 불구하고 금융적인 해석능력이 부족하여 많이 고생하였습니다. 만약 이 강의를 듣기를 고민하고 있다면, 자신이 통계학과 파이썬을 어느정도 할 수 있는지 자체 레벨테스트를 할 필요가 있습니다. 강의의 구성과 교수님의 설명은 전체적으로 만족스럽습니다. 이 교수님이 조금 더 낮은 레벨의 강의를 개설하여 입문자를 더 많이 늘렸으면 좋겠네요.

par Carlo A S

•18 janv. 2021

The course provides a good basic knowledge of the matter.

The learning curve is not uniform across the four weeks, becoming substantially steeper in the last week. Many concepts are given without much discussion during this week.

Some incoherencies between the slides and the exercises make the learning process sometime frustrating.

par Daniel H

•13 févr. 2020

Great Intro. course to Python application in the Financial domain. It will be beneficial to have some Python and Pandas background. Good examples, very practical.

It's a great course - with many practical examples. But this course needs some basic Statistics and Python knowledge to really follow along with some "deep concepts".

par Mario A L

•25 mars 2020

It is a short and well organized course with a gently introduction to the popular Python's data analysis library, Pandas. In addition, the course shows sufficient statistical and financial tools to build simple and practical strategies that put some light on the obscure (at least for some people) market stock analysis.

par MESSAN A

•11 nov. 2020

In general, the course is very interesting, very clear with a lot of explanation. However, I dislike some part of the quiz: when we need to follow the link to answer the question, it is not possible because the link doesn't show the notebook but our course's process. It will be greater if you ameliorate this part.

- Analyste de données Google
- Gestion de projet Google
- Conception d'expérience utilisateur Google
- Google IT Support
- Science des données IBM
- Analyste de données d'IBM
- Analyse des données IBM avec Excel et R
- Analyste de cybersécurité d'IBM
- Marketing appliqué au réseau social Facebook
- Développeur(euse) Cloud Full Stack IBM
- Sales Development Representative Salesforce
- Opérations de ventes Salesforce
- Soporte de Tecnologías de la Información de Google
- Certificado profesional de Suporte em TI do Google
- Automatisation informatique Google avec Python
- DeepLearning.AI Tensorflow
- Certifications populaires en cybersécurité
- Certifications SQL populaires
- Certifications populaires en informatique
- Voir tous les certificats

- cours gratuits
- Apprendre une langue
- python
- Java
- conception web
- SQL
- Cursos Gratis
- Microsoft Excel
- Gestion de projet
- Cybersécurité
- Ressources humaines
- Cours gratuits en Science de données
- parler anglais
- Rédaction de contenu
- Développement Web Full Stack
- Intelligence artificielle
- Programmation en C
- Compétences en communication
- Blockchain
- Voir tous les cours

- Compétences pour les équipes en charge de la science de données
- Prise de décisions basées sur les données
- Compétences en génie logiciel
- Compétences personnelles pour les équipes d'ingénieurs
- Compétences en gestion
- Compétences en marketing
- Compétences pour les équipes en charge des ventes
- Compétences en gestion de produits
- Compétences en finance
- Projets de développement Android
- Projets TensorFlow et Keras
- Le Python pour tous
- Deep Learning
- Compétences Excel pour l'entreprise
- Bases de la gestion d'entreprise
- Apprentissage automatique
- Principes de base d'AWS
- Fondements de l'ingénierie des données
- Compétences d'analyste de données
- Compétences pour un concepteur UX

- Certificats MasterTrack®
- Certificats Professionnels
- Certificats d'université
- MBA & diplômes commerciaux
- Diplômes en science des données
- Diplômes en informatique
- Diplômes en analyse des données
- Diplômes de santé publique
- Diplômes en sciences sociales
- Diplômes en gestion
- Diplômes des meilleures universités européennes
- Maîtrises
- Licences
- Diplôme avec un Parcours de performance
- Cours de BSc
- Qu'est-ce qu'une licence ?
- Combien de temps dure un Master ?
- Un MBA en ligne vaut-il le coup ?
- 7 façons de payer ses études supérieures
- Voir tous les diplômes