Chevron Left
Retour à Probabilistic Graphical Models 1: Representation

Avis et commentaires pour d'étudiants pour Probabilistic Graphical Models 1: Representation par Université de Stanford

4.6
étoiles
1,385 évaluations

À propos du cours

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems. This course is the first in a sequence of three. It describes the two basic PGM representations: Bayesian Networks, which rely on a directed graph; and Markov networks, which use an undirected graph. The course discusses both the theoretical properties of these representations as well as their use in practice. The (highly recommended) honors track contains several hands-on assignments on how to represent some real-world problems. The course also presents some important extensions beyond the basic PGM representation, which allow more complex models to be encoded compactly....

Meilleurs avis

ST

12 juil. 2017

Prof. Koller did a great job communicating difficult material in an accessible manner. Thanks to her for starting Coursera and offering this advanced course so that we can all learn...Kudos!!

CM

22 oct. 2017

The course was deep, and well-taught. This is not a spoon-feeding course like some others. The only downside were some "mechanical" problems (e.g. code submission didn't work for me).

Filtrer par :

1 - 25 sur 301 Avis pour Probabilistic Graphical Models 1: Representation

par Sandeep M

23 sept. 2018

par Ben L

12 janv. 2019

par Amine M

30 avr. 2019

par Max B

19 déc. 2020

par M

6 janv. 2018

par Deleted A

18 nov. 2018

par Alex L

9 avr. 2018

par Michael S E

14 févr. 2017

par Chuck M

22 oct. 2017

par Alexander P

1 avr. 2019

par Alexey G

6 nov. 2016

par Casey C

31 oct. 2016

par M A B

31 août 2018

par Ashok S

30 mars 2018

par Sergey S

24 sept. 2020

par Dhruv P

18 juin 2017

par Shi Y

12 nov. 2018

par Phillip W

8 avr. 2019

par Sergey V

28 oct. 2016

par Yuxun L

7 déc. 2016

par StudyExchange

12 mars 2018

par Santosh K S

28 juil. 2018

par Ram G

13 juil. 2017

par Abhishek K

13 nov. 2016

par Tomasz L

12 mai 2019