Chevron Left
Retour à Probabilistic Graphical Models 2: Inference

Avis et commentaires pour d'étudiants pour Probabilistic Graphical Models 2: Inference par Université de Stanford

476 évaluations

À propos du cours

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems. This course is the second in a sequence of three. Following the first course, which focused on representation, this course addresses the question of probabilistic inference: how a PGM can be used to answer questions. Even though a PGM generally describes a very high dimensional distribution, its structure is designed so as to allow questions to be answered efficiently. The course presents both exact and approximate algorithms for different types of inference tasks, and discusses where each could best be applied. The (highly recommended) honors track contains two hands-on programming assignments, in which key routines of the most commonly used exact and approximate algorithms are implemented and applied to a real-world problem....

Meilleurs avis


22 août 2019

Just like the first course of the specialization, this course is really good. It is well organized and taught in the best way which really helped me to implement similar ideas for my projects.


19 août 2019

I have clearly learnt a lot during this course. Even though some things should be updated and maybe completed, I would definitely recommend it to anyone whose interest lies in PGMs.

Filtrer par :

1 - 25 sur 74 Avis pour Probabilistic Graphical Models 2: Inference

par AlexanderV

9 mars 2020

par Shi Y

16 déc. 2018

par Jonathan H

3 août 2017

par Anurag S

8 nov. 2017

par Tianyi X

23 févr. 2018

par Deleted A

18 nov. 2018

par Michael K

24 déc. 2016

par george v

28 nov. 2017

par Kaixuan Z

4 déc. 2018

par Michel S

14 juil. 2018

par Jiaxing L

27 nov. 2016

par Hunter J

2 mai 2017

par Kuan-Cheng L

23 juil. 2020

par Mahmoud S

22 févr. 2019

par Sergey S

24 sept. 2020

par Chan-Se-Yeun

30 janv. 2018

par Rishi C

28 oct. 2017

par Dat N

20 nov. 2019

par Satish P

28 août 2020

par Alfred D

29 juil. 2020

par Ayush T

23 août 2019

par Anthony L

20 août 2019

par Lik M C

3 févr. 2019

par Orlando D

12 mars 2017

par Yang P

29 mai 2017