Chevron Left
Retour à Apprentissage mechanique pratique

Avis et commentaires pour l'étudiant pour Apprentissage mechanique pratique par Université Johns-Hopkins

4.5
2,679 notes
501 avis

À propos du cours

One of the most common tasks performed by data scientists and data analysts are prediction and machine learning. This course will cover the basic components of building and applying prediction functions with an emphasis on practical applications. The course will provide basic grounding in concepts such as training and tests sets, overfitting, and error rates. The course will also introduce a range of model based and algorithmic machine learning methods including regression, classification trees, Naive Bayes, and random forests. The course will cover the complete process of building prediction functions including data collection, feature creation, algorithms, and evaluation....

Meilleurs avis

JC

Jan 17, 2017

excellent course. Be prepared to learn a lot if you work hard and don't give up if you think it is hard, just continue thinking, and interact with other students and tutors + Google and Stackoverflow!

AD

Mar 01, 2017

Issues of every stage of the construction of learning machine model, as well as issues with several different machine learning methods are well and in fine yet very understandable detail explained.

Filtrer par :

476 - 493 sur 493 Examens pour Apprentissage mechanique pratique

par Alexander R

Aug 21, 2017

Very basic, might as well just read a cheat sheet. No explanation of how or why to choose different options in a pipeline, for example, which data slicing to use (k-folds, bootstrap, etc). Just runs through how to do them.

par Michael S

Feb 07, 2016

Had big expectations for this one... really one of the ones to look forward to after working through the beginning of the specialization, but for some reason, it seemed any prof or even TA interaction was absent this time around like in none of the other specialization coursed to date. Bugs in the new interface and quizzes weren't really addressed. Couldn't even get an official response about the apparent removal of Distinction-level now (which I'd been working to get in all specialization courses and now seems no longer an option). Still interesting content. As a "free" course, it's still really valuable. As one of the people that paid for this and all others in this specialization, this is the one I felt didn't return as much value to justify the payment with no "official" course staff seeming to be involved this round.

par Norman B

Feb 07, 2016

This is too high level for a machine learning course. You don't exactly learn a lot about the techniques just how to use them and name them out if you're having a conversation with a person. My least favorite course in the series

par Michael R

Jan 19, 2016

lecture can be really unclear sometimes because lecturer breezes through the actual implementation of training/predicting: "use x, y, and z [underlines some stuff on screen]" and you're done

Also lots of mistakes/typos in lecture and quizzes

par max

Jan 18, 2017

not what I expected for a machine learning course

par Marshall M

Sep 23, 2017

A lot of the concepts in the course are grazed over very briefly and don't go into that much depth. In addition, some of the concepts are taught as concepts, they are taught through examples which tends to contextualize the material. Good content but could be put together in a more in depth manner.

par Jeffrey G

Sep 12, 2017

Course project was the only project work, needed more. This course should also use swirl(). Quizzes et al contained mistakes.

par Mehrshad E

Mar 28, 2018

This course really lack something like SWIRL. The lectures only provide a summary, which is not helpful for someone new to the machine learning. Also, the instructure tries to cover pretty much everything but not in depth; instead, I think fewer topics should be covered in depth.

par Michael R

Oct 03, 2019

It's a mediocre intro to some machine learning tools. I think the course materials could be drastically improved.

par Danielle S

Mar 22, 2016

Material is very high level. No ppt's are given, so all links presented in the video's cannot be viewed.

Quizzes are based upon old packages, so incorrect answers are provided.

No replies at discussion board from TA"s or instructors.

par Jo S

Feb 04, 2016

Poor compared with some of the others on this specialisation. The lectures are too fast and high level, with no allowance given for people who are unfamiliar with this area and attempting to learn it.

par Stephane T

Jan 31, 2016

Too much surface, not enough depth.

par Thomas H

Feb 08, 2016

Project description versus requirements were terrible, not sure if the new Coursera format played a role in the issues or not. Quite a few of the homework items require guessing as the answers don't align to the results of the latest tools they have you use. If the first class or three in the series was like this I wouldn't have taken the courses.

par Robert O

Apr 06, 2016

Very little depth. I don't recommend this if you don't already have background in statistics or R. I really didn't learn anything. I mostly just gamed the quizzes and projects.

par Etienne B

Mar 01, 2016

Cannot take the exam, I have to pay... wtf... I will probably pay at the end, but I want to take the class first. Without certificate I cannot prove I took the course.

par Stephen E

Jun 27, 2016

To be honest I don't think this is worth the money.

par Gianluca M

Oct 20, 2016

Gosh I hated hated hated this course. Nothing to learn here. You will just be given lots of names with no explanation whatsoever.

I often felt really angry at the teacher because of the way he would introduce entire prediction models without explaining anything about them. Also, I really didn't like the fact that the course is centered on caret, a "shortcut" package to do stuff fast. Before doing things fast I need to know what I am doing! Finally, the quizzes and assignments are completely disconnected from the courses.

The worst course I have ever taken on coursera.

par yi s

Jul 19, 2016

too general no depth, not recommended for science or engineering degree holders