Retour à Réseau de neurones et deep learning

4.9

étoiles

95,294 évaluations

•

19,022 avis

If you want to break into cutting-edge AI, this course will help you do so. Deep learning engineers are highly sought after, and mastering deep learning will give you numerous new career opportunities. Deep learning is also a new "superpower" that will let you build AI systems that just weren't possible a few years ago.
In this course, you will learn the foundations of deep learning. When you finish this class, you will:
- Understand the major technology trends driving Deep Learning
- Be able to build, train and apply fully connected deep neural networks
- Know how to implement efficient (vectorized) neural networks
- Understand the key parameters in a neural network's architecture
This course also teaches you how Deep Learning actually works, rather than presenting only a cursory or surface-level description. So after completing it, you will be able to apply deep learning to a your own applications. If you are looking for a job in AI, after this course you will also be able to answer basic interview questions.
This is the first course of the Deep Learning Specialization....

SS

Nov 27, 2017

Fantastic introduction to deep NNs starting from the shallow case of logistic regression and generalizing across multiple layers. The material is very well structured and Dr. Ng is an amazing teacher.

NT

Jan 18, 2020

Very structured approach to developing a neural network which I believe I can use as foundation for any project regardless its complexity. Thanks professor Andrew Ng and the team for their dedication.

Filtrer par :

par MD A

•Jul 18, 2019

Thorough and simple explanations that help internalize the deep learning concepts. Video lectures are very helpful. Listen more than once to clarify concepts. Very useful jupyter notebook exercises with solutions that provide knowledge reinforcement. Vectorized form of deep learning neural network equations enable development of clutter-free and faster scalable solutions. Before taking the course refresh your knowledge of linear algebra esp. basic matrix operation such as matrix size, transpose, and implementation in Python via numpy such as numpy.dot for matrix multiplication, numpy.multiply for element-wise multiplication. Familiarity of Python key:value dictionary data structure and retrieval of values via keys. This knowledge will build confidence to code the functions and methods for forward propagation, back propagation, and gradient descent to update weights and biases. Also pay some attention to how indices in square brackets are used to identify matrices for inputs, outputs, parameters (weights and biases), activation values/models, various layers of a neural network, and nodes in a particular layer (all explained well in lectures.

par Alexander M

•Oct 15, 2018

I've been impossibly busy and first thought this was something i could play in the background while I did other work. Quickly it became apparent that data I had been used to with M.shape = (user/observation/etc, feature) was now the transpose. This took a simple few examples on paper to convince me why this was a superior notation for D/RNN architectures given numpy notation. I also at first thought that the bias should be added to W, X, for greater expressibility of the relationship y = g(WX) and for the backprop updates that require 'estimating' the W.T*g^-1(y) and g^-1(y)*X.T (where y is understood as the general activation after layer l and X is the general output of the previous layer), but now I see why separating the bias is useful -- it estimates the 'scale' of all the data at the output layer at once (estimating the unbalance in the marginal distribution, for example), whereas the other gradients come from estimating the perturbative deformation in the input layer, thus they are slightly different from the perspective of forward backwards distributional learning. Bravo, and thank you!

par Mahesh G

•Aug 29, 2017

Thanks for the course. Very neatly explained on the background maths that happens in neural networks. This course will help you understand the step by step what happens within the network. The step by step procedure which is explained by Professor is great and he has repeatedly stressed the important steps to make it clear. Along with the explaining the formulas the assignment helps in implementing the formulas step by step and converting the whole thing to a neural network model, this is a great learning. One of the important thing covered in the beginning of the course is about vectorization, python broadcasting which is the key for neural network.

The pace at which Professor explained the concepts is good and easy to follow and the structure of the course is well laid-out which helps for the beginners.

One thing that could have been better is the assignments, current assignments are definitely helpful for beginners like me, but could have some more assignments which increases the complexity level (may be it is there in subsequent courses).

Overall very good course and helped me

par Krishna k N

•May 18, 2019

I admire Professor Andrew Ng's patience in helping the students take baby steps by painting a big picture from each small pixel, just as how a neural network is built.

This course has given me great exposure to how neural network, although I realize I need to take a Python course to type code more freely and easily.

I'm going to do that next and then come back to the remaining courses in this specialization.

feedback - it's really hard to visualize some of these matrices and their dimensions used in a large neural network with so many parameters such as nx features, m training examples, n iterations, L layers with (nL, NL-1) weights, (nL,1) biases etc. I understand it's hard to show these matrices by writing as they are very large. I wish someone would develop a more "animative" way of illustrating these matrices that will make the intuition more stronger. for example, calculating forward_activation for all layers and all neurons across these layers by just passing X and parameters is a massive operation and the intuition stumbles purely by the scale of such a matrix operation.

par ANUJ K J

•Jan 27, 2020

Things that I learned: 1) Introduction to deep learning 2) Logistic Regression, gradient descent on logistic regression 3) Forward and Backward Propagation 4) Computational graph and how to use the computational graph to calculate the forward and backward prop 5) Shallow Neural Network, and how to work on it end to end 6) Deep Neural Network and it's end-to-end implementation on an application (Classification of cat vs non-cat). Pros: 1) The course is in Python 2) The way Andrew Ng sir teaches is simplistic and memorable as he starts from small concepts and relates the same concept in complex problems too. For example:- He started teaching forward and backward prop using logistic regression then he carried the same in shallow neural net and finally on a deep neural net. Cons: 1) The number of questions in the video is less as compared to the Machine Learning course by Andrew Ng. 2) There could have been more clarification on a few small topics. 3) The video didn't provide any sort of notes or lecture slides. ( Note that I found useful: https://lnkd.in/f3fZGCy )

par Peter D

•Dec 03, 2017

As usual, Prof. Andrew Ng knocks it out of the park!!! He would argue otherwise, but he's a natural born teacher whether he admits it or not. This was a challenging course, but I found the objectives to be achievable with a bit of hard work and cool-headed thought. Having taken Prof. Ng's Machine Learning course already, most of the material from the first two weeks of NN4DL was review. Unlike the broader ML course, DL was much more narrowly focused on concepts leading to mastery of deep neural nets. It also ditches the MATLAB/Octave used in ML for a more portable Python environment. I had basically no knowledge of Python when I started, so I guess I learned it in 4 weeks! :D My advice: take ML first, or you may be lost. I had the math and ML background for this stuff to make sense, so Python was the only thing entirely new to me. If you're fuzzy on calculus, or ML, or programming, I don't recommend starting with this course. But if you have a strong background on those things, you'll find this course is well worth your time! Good luck.

par Rob M

•May 13, 2019

I've taken and finished Udacity's Nanodegree, and while it certainly has a lot of its own strengths, I came here to get another perspective on the math involved, especially in backpropogation and numpy operations. Lo and behold, this class (Andrew in particular, of course) delivered exactly what I was looking for. And because the course was supremely self-paced, instead of feeling rushed to hit an official deadline like Udacity's course, I was able to take the time I needed to watch the videos a couple times each, when necessary, and really drill home the concepts.

Lastly, the projects here at Coursera are extremely well thought out, organized, and testable. I *loved* the use of the numpy seed operation, so when I completed a function and tested it, I felt extremely confident that the inputs, operations, and outputs were exactly what I needed. At this point, I definitely like the approach to projects much better than Udacity's (always felt like more of a guessing game there).

I'm excited to start and finish the next course in the Specialization!

par Michael S E

•Feb 28, 2018

Excellent course. Quick introduction to the basics of neural networks. This course has very high overlap with Prof. Ng's course on neural networks at Stanford. This appears to be the updated version on his new DeepLearning.ai platform.

The programming assignments are very user friendly, in that the code is already highly structured with student code just to fill in a few blanks. They also provide built-in test cases. The difficulty level is not high compared to a more open ended problem formulation (let alone a real world task). The assignments do make efficient use of student time in that they focus on the essential aspects of the course material and minimize time spent on extraneous computer programming challenges.

I appreciated the consistent and strategically chosen notation, which makes it easier to translate formulas into code snippets. Ng's notation conventions allow you to make an educated guess at how to vectorize algorithms in numpy simply by capitalizing variable names.

Thank you for sharing your knowledge and expertise with us!

par Manuel G

•Sep 09, 2017

This is a great class to get introduced to deep learning concepts and get some hands on experience with the underlying machine learning aspects. The Jupyter notebooks are great in that you are left with something you can use later as a starting point if you want to do your own implementations. The flip side of that is that, in my view, the coding assignments are made too easy and I feel that after all the hints and given the code you are given, the student's contribution is a tad too trivial at that point. Still, this doesn't change my rating because from the perspective of learning about DL concepts, this is not a crucial point. Since the course is still very new, there remain a few bits of consistency in notation and other little details that haven't yet been 100% fixed, but there's a lot of activity in the forums to help you clarify things and give feedback on what is not working.

As usual, Andrew Ng does a great job of motivating and explaining all the concepts. If you enjoyed his ML class, definitely go with this specialization.

par Tony H

•Aug 16, 2017

Extremely well-taught and well-structured introduction to neural networks and deep learning. I found the explanations of forward and back propagation to be at a level suitable for getting the algorithms to work without swamping one in detailed calculus, but with enough detail to enable productive further study. There is an introduction to computation graphs that will hopefully lead into Tensorflow in the next courses in this specialisation. Professor Ng is a methodical, very knowledgable and interesting teacher and I really enjoyed all his video lectures. The weekly quizzes are reasonably challenging and the programming exercises very well written and enjoyable. If I have one minor criticism it is that there is perhaps a little too much 'hand-holding' in the programming exercises; I felt that some code was supplied that could have been left for the student to fill in, some very basic Python instructions could also have been left for the student. I am greatly looking forward to the next courses in this specialisation.

par Nicolas G

•Jul 22, 2020

The best course in deep learning out there! Python assignments might be a little easy for someone with extensive knowledge of python. I don't think this is necessarily a bad thing, because it makes the student focus more on understanding deep learning rather than spending time writing python-based code (e.g. creating the functions, importing libraries, etc). If you don't have extensive python knowledge, you will be able to do the assignments, but I would recommend to try to understand how the whole code is structured and what each line of code is doing. Also, although Andrew continuously suggests to not worry about the calculus, I think it is helpful (and maybe necessary) to have some basic knowledge of calculus (derivatives) and linear algebra (vectors, matrix multiplication, etc) before doing the course. This will help you have a deeper understanding of the math behind the code and how neural networks work. Overall, Andrew is a great professor and covers all topics in a comprehensive and understandable way!

par Shibhikkiran D

•Jul 08, 2019

First of all, I thank Professor Andrew Ng for offering this high quality "Deep Learning" specialization. This specialization helped me overall to gain a solid fundamentals and strong intuition about building blocks of Neural Networks. I'm looking forward to have a next level course on top of this track. Thanks again, Sir!

I strongly recommend this specialization for anyone who wish get their hands dirty and wants to understand what really happens under the hood of Neural networks with some curiosity.

Some of the key factors that differentiate this specialization from other specialization course:

1. Concepts are laid from ground up (i.e you to got to build models using basic numpy/pandas/python and then all the way up using tensorflow and keras etc)

2. Programming Assignments at end of each week on every course.

3. Reference to influential research papers on each topics and guidance provided to study those articles.

4. Motivation talks from few great leaders and scientist from Deep Learning field/community.

par Rajneesh S

•Oct 08, 2017

I really enjoyed this course. Andrew really knows this topic very well and his passion shows in his teaching. The course was structured very well and was very easy to follow.

I underestimated the knowledge of math required for deep learning. I was never very good at math and it really has been a while I learned vectors, matrices, calculus etc., but this course gave a nice introduction to the math that is needed. However, for me personally, I still had to go back and learn the basic math concepts. Khan Academy and YouTube videos were very helpful.

I am very good in coding. However this course made me realize that there is not much coding as such for deep learning. Python libraries really makes it easy. You need to understand the mathematics and formulas, and after that, its all about the test data and your hyper parameters.

Unfortunately I have to take a break as I have to travel for business, but I am highly motivated and I will definitely return and complete the other courses for specialization.

par Prof. C H V

•May 25, 2020

Excellent course with hands-on sessions. It is really difficult to learn neural network and deep learning with only theory part. Practice along with theory makes course very much interesting. In this course, Python is used which is open source and freely available. But it is difficult to execute downloaded iPython notebook as dataset "lr_utils" is not available. However I could execute the code with other dataset but it was difficult initially. There should be separate video lecture about explaining how to solve assignment because initially it was difficult for me to solve the assignment. Grader was giving grade 0 even though code was right then later I found that I was removing some of the lines in comment region and hence I was getting 0 grade even though source code was correct. So special session about submission of assignment should be there. This was my first course on neural network and deep learning and it was great learning experience for me.

par Sebastian J

•Sep 10, 2017

Wonderful introduction to deep neural networks and the theory behind them. Programming exerices make for a fun way to try out concepts introduced in this course. Andrew has mastered the delivery of complex concepts and math behind neural networks in a systematic and discrete chunks, which allows for easier absorbsion of the material. One thing in particular that this course really shines at is looking at the computation graph of forward propagation and using it to explain derivatives used in backward propagation. This is one thing I missed in Andrew's Machine Learning course. Another subtle change which I found to have a big impact on the ability to reason about various computations in the choice on how to organize input and parameter matrices used in neural network modeling. I found the choices presented in this course a lot more intuitive than the ones in ML class. Many thanks to Andrew and his assistants for putting together this material.

par Nkululeko N

•Apr 05, 2020

The first course is very good for beginners, however if one has no background skills on how to program in python like myself, then this course is a bit challenging. Implementing all of what I've learned to the Juypiter Notebook using python 3.0 was a bit tricky but understandable as you learn. I feel happy and motivated to continue and finish the whole specialization course. I have a strong background in integration calculus, but because the last time I had to do calculus was years ago, it was also a bit tricky to understand some of the calculus concepts presented in the course. I think for the first time user, it will be highly advisable coming from my own thoughts that the student learn Calculus mathematics first and as well as the python specialization course before delving into this Deep learning course. I know the lecturer mentioned that it is not necessary to know Calculus maths, but personally I feel like people need it a lot.

par Novin S

•Feb 05, 2018

I liked the course very much. The videos and steps to get me to the point that I can really implement the concepts was very much helpful. Although I feel that I need more practice by programming. I think it would have been better if more programming practices provided.

Many of the programming parts that was related to the preparation of the data was provided. Maybe it could be beneficiary to do those parts on our own as well.

The forum is so crowded and hard to find my way around. Maybe something can be done about that as well.

In general I really liked the course, and I think it was the best way to learn the Neural Networks. Now I feel more confident to dive into text books and more mathematics of the NN. I would also like to add that I really loved the "heros" part. Get to know the community, history, and learning about the way that the pioneers and creators of a topic think was very helpful for me.

Thank you and good job

Novin

par Maxim S

•Jan 26, 2018

Dr Ng is an outstanding teacher. I like that the material was presented gradually and incrementally, without large gaps. I never felt like I was thrown into the deep end and forced to fend for myself, like I did in courses from at least one Coursera competitive. On the few occasions that I ran into problems with the assignments, browsing the forums was really helpful. With so many people in the class, there was always someone else who has run into the same issue I had experienced. Mentors are pretty diligent about responding to questions. I still struggle a bit with the math since it's been 20 years since I've had it in college. Wish I were still able to derive the equations Dr Ng used. It is great that Dr Ng provided derivations as optional lectures. One issue I have is that the choice of layer sizes hasn't been covered. Perhaps, it'll be covered in future courses in the specialization. Thanks.

par Rameses

•Oct 20, 2019

I have taken a couple of Neural Network classes at university level for my master's. I did learn a lot but this course on Deep Learning introduced me to concepts I had never had the chance to encounter in those classes. I enjoyed taking this class as well working on the assignments. The assignments are excellent even if most of the coding has been done for you. It is up to the student to understand the underlying code and to pick up Python if she/he has not encountered Python before. In this course, it is important to understand the core concepts before progressing to more complex concepts. I found myself frequently getting lost and having to revert to earlier topics to understand later topics.

It was a pleasant experience working with Jupyter notebooks, something I did not have the familiarity with.

Kudos to Andrew and team for making this course an enjoyable and rewarding learning experience.

par shunjie l

•Jan 03, 2019

Have you taken a course and has no idea what the lecturer is talking about ? If yes, I am happy to report that it is not the case with this course.

The materials are easy to follow and the video lectures's pacing is perfect for anyone with no experience with neural networks. They are well designed to help students to understand the basics of Neural networks by keeping materials focused but yet detailed enough.

Also, I have to applaud to Dr A. Ng's lecture delivery. Never once would he make students feel lost or discouraged, and he drop little encouragements along the way. It is like preventive-medicine, in the sense that he anticipated and took measures, to allow students to stay engaged and interested. Kudos !

TLDR: For anyone who has little to no background in Machine Learning and is interested in understanding rather than just knowing the basics with Neural Network, this course is for you.

par Yogesh G

•Apr 06, 2020

The prospects of deep learning is exciting in every field from science, engineering, medicine, economics and many more. If you have any interest in Neural networks and Deep learning irrespective of your academic background, then this specialization will be a great opportunity to you for learning and harnessing the power of deep learning in your field.

The best part of the specialization are the programming assignments which are based on building and implementing popular real life applications of deep learning. Even though this may seem tough, you will have to fill only the important snippets of the code(the rest is already there for you), which makes it intuitive and easy. I used python for first time in this course so the course also became way to learn python. Very well designed course structure through out the specialization! It's a great way to introduce yourself to Deep Learning.

par Ben T

•Aug 28, 2017

This was really good. Well paced and thought out. Paid attention to explaining the underlying fundamentals of math as well as the required Python programming elements. Important intuitions on how things work were useful for understanding the greater scheme of things. Also enjoyed the weekly "Heroes of Deep Learning" videos.

I completed the inaugural cohort of another online deep learning course and whilst it covered a lot of great material and current research in a short time the pacing was often too fast and as a complete beginner I was a little overwhelmed; feeling like I was always missing key concepts. I also found that Andrew Ng's videos contained less about personality and hype and felt like they were on a more personal level than some kind of mass market video.

I definitely feel like I've learned something useful and I look forward to the other courses in this specialisation.

par Mohammad A Q

•Jun 13, 2020

This course was phenomenal!

First I want to thank Professor Ng and the teaching staff as well as the Coursera team for providing such a great quality course.

I had taken the Machine Learning course by professor Ng before which was a great course itself but I had still some issues with backpropagation. (it was a little bit complicated) In this course, on the other hand, the professor explains backpropagation and the math behind it in a lucid, simple way.

Using python as the course's programming language was excellent. It is in my opinion what makes this specialization an absolute winner. The course's assignments and quizzes would make the concepts of the course even more clear.

The interview with heroes of the deep learning section was a great idea, professional people talking about how they got where they are and advising beginners on how to thrive in this path is really helpful.

par Dmitry R

•Apr 15, 2020

In the deep learning specialization provided on Coursera, you are taught the theory by professor Andrew Ng, who is the Co-Founder of Coursera and has headed the Google Brain Project and Baidu AI group in the past. Professor Ng teaches in a very relaxed and patient tone and the explanations are clear and well formulated. One of the major upsides I liked is that the notation used is carefully chosen and very clear. Professor Ng makes sure to reference the most important scientific papers that contributed to each idea, which is great if you want to dive a little more into details. To progress in the course, at the end of each major chapter you will have to submit a multiple-choice quiz and one or two programming assignments in python. The programming assignments require you to complete a 3/4 finished code, and the focus is on understanding the concept and not on programming.

- Recherche d'un but et d'un sens à la vie
- Comprendre la recherche médicale
- Le japonais pour les débutants
- Introduction au Cloud Computing
- Les bases de la pleine conscience
- Les fondamentaux de la finance
- Apprentissage automatique
- Apprentissage automatique à l'aide de SAS Viya
- La science du bien-être
- Recherche des contacts COVID-19
- L'IA pour tous
- Marchés financiers
- Introduction à la psychologie
- Initiation à AWS
- Marketing international
- C++
- Analyses prédictives & Exploration de données
- Apprendre à apprendre de l'UCSD
- La programmation pour tous de Michigan
- La programmation en R de JHU
- Formation Google CBRS CPI

- Traitement automatique du langage naturel (NLP)
- IA pour la médecine
- Doué avec les mots : écrire & éditer
- Modélisation des maladies infectieuses
- La prononciation de l'anglais américain
- Automatisation de test de logiciels
- Deep Learning
- Le Python pour tous
- Science des données
- Bases de la gestion d'entreprise
- Compétences Excel pour l'entreprise
- Sciences des données avec Python
- La finance pour tous
- Compétences en communication pour les ingénieurs
- Formation à la vente
- Gestion de marques de carrières
- Business Analytics de Wharton
- La psychologie positive de Penn
- Apprentissage automatique de Washington
- CalArts conception graphique

- Certificats Professionnels
- Certificats MasterTrack
- Google IT Support
- Science des données IBM
- Ingénierie des données Google Cloud
- IA appliqué à IBM
- Architecture Google Cloud
- Analyste de cybersécurité d'IBM
- Automatisation informatique Google avec Python
- Utilisation des mainframes IBM z/OS
- Gestion de projet appliquée de l'UCI
- Certificat stratégie de mise en forme
- Certificat Génie et gestion de la construction
- Certificat Big Data
- Certificat d'apprentissage automatique pour l'analytique
- Certificat en gestion d'innovation et entrepreneuriat
- Certificat en développement et durabilité
- Certificat en travail social
- Certificat d'IA et d'apprentissage automatique
- Certificat d'analyse et de visualisation de données spatiales

- Diplômes en informatique
- Diplômes commerciaux
- Diplômes de santé publique
- Diplômes en science des données
- Licences
- Licence d'informatique
- MS en Génie électrique
- Licence terminée
- MS en gestion
- MS en informatique
- MPH
- Master de comptabilité
- MCIT
- MBA en ligne
- Master Science des données appliquée
- Global MBA
- Masters en innovation & entrepreneuriat
- MCS science de données
- Master en informatique
- Master en santé publique