Retour à Réseau de neurones et deep learning

étoiles

117,349 évaluations

In the first course of the Deep Learning Specialization, you will study the foundational concept of neural networks and deep learning.
By the end, you will be familiar with the significant technological trends driving the rise of deep learning; build, train, and apply fully connected deep neural networks; implement efficient (vectorized) neural networks; identify key parameters in a neural network’s architecture; and apply deep learning to your own applications.
The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

SK

7 juil. 2021

Very informative course by Andrew Ng and team.Teaches everything from the basics and helps you understand difficult topics (as i thought before taking this course) such as Deep Neural Networks easily.

SK

29 août 2018

Nothing can get better than this course from Professor Andrew Ng. A must for every Data science enthusiast. Gets you up to speed right from the fundamentals. Thanks a lot for Prof Andrew and his team.

Filtrer par :

par Zhengyang L

•12 juil. 2020

This course has provided me the most suitable level of math details. Many other books and tutorials tend to overlook the fact that learners are usually not experts in machine learning and statistics. An example is the explanation of why the cost function of logistic regression should be the form provided. When I first saw the formula in a book, I was confused and could not rationalize it myself, which troubled me a lot because I don't think I can implement an algorithm without knowing the cost function. This course is really good for beginners who cares "why".

par dsp

•23 août 2018

Well motivated. Clearly structured. Generalizing from Logistic Regression over shallow Neural Network to Deep Neural Networks was easy to follow and reinforced the structure of the approach. I overall liked the presentation of the maths and assume that it is well suited for an audience of differing affinity to maths. For myself, I will have to do the calculations again on my own to get a real grip on them. [Writing db (=something that should grow with steeper b) for dL/db (=which shrinks with steeper b, given the same change in L) still feels wrong.] Thanks!

par Raimond L

•19 août 2017

Nice basic course, gives a clear look at what is happening inside neural networks, all details are explained in quite clear and understandable form with practical tasks of implementing everything, so that you really know what is going on.

After that course you will have a knowledge of how to implement a simple neural network and it's learning algorithm from zero. Also you will get some knowledge about matrices operations, derivatives and python programming.

I do highly recommend this course for novices and for more skilled people. It was a positive experience.

par Nicholas M W

•2 janv. 2018

Excellent presentation of the material. The homework assignments made this approachable by holding my hand as I learned "how to walk" with matrices and multilayer neural networks. I feel like there could have been one more "do everything yourself" assignment, where we had to build another L-layer neural network completely from scratch, but maybe that isn't the point of this course, since I expect I'll be using keras or something in "the real world". An optional quiz involving some of the derivations for some equations might have been a nice stretch, as well.

par Augden S

•11 oct. 2018

A solid introduction into discussing the basics of machine learning. Although I had to research some details on specifics topics which I could not completely understand in the course, that was my own problem, really. The basic steps for creating a neural network and understanding the functions behind initializing parameters, forward propagation, cost and backward propagation are explained well, and since the assignments are in python, I've learned a few packages and helpful coding hacks to better implement efficiency in programs. Overall, I would recommend!

par Akshay B S

•6 sept. 2017

It is a great course to get started on Neural Networks and their practical implementation. The whole course is constructed keeping the end result of building an OPTIMIZED program in python for building a neural network and everything connects together in the final programming assignment. Not only do you learn what are neural networks and how they work but you also learn very importantly how to code in a very optimized manner so that you decrease the training time as much as possible. Definitely a great course, looking forward to complete the specialization.

par Ning P

•26 janv. 2021

I understand so much more about deep learning. Learning about some basic Mathematics of calculus and derivatives really helps in understanding. Professor Andrew also repeated lots of things several time which is good in order to check whether I got that particular part correctly or not. Somehow having no python basic at all will definitely be difficult in order to finish the assignment since the video lesson did not give lots of example on this but eventually after following along and spending quite lots of time on the Lab do help understand how it works.

par Hendra B

•28 janv. 2020

This course is the best course to start learning deep learning. You will enjoy the step-by-step creation of shallow and deep neural networks.

Frankly speaking, I am amazed at the creativity and brilliance of the Andrew Ng's team for preparing the programming assignments and quizzes. Therefore, I am speechless.

Last but not least, I am also really grateful and thankful for Coursera who has given me Financial Aid for this course. In return for this act of kindness, I am able to finish it before any deadlines.

Thank you deeplearning.ai!

Thank you Coursera!

Thank

par Mattias K

•4 nov. 2017

Great intro to deep learning. Although it's a bit repetitive at times, especially coding bits - one is not really forced to understand the components at times but can instead just follow instructions and copy paste bits and pieces. Would for example have appreciated that more time was spent on explaining the details of derivation of backwards propagation especially within "deep domain". The intuition is clear, but either forcing the user to do (or giving a link to) a step by step derivation would have been useful and saved time. Thanks for a great course.

par Pantelis D

•19 déc. 2020

An excellent followup to the ML course of the same professor (Andrew Ng), similar short, on point and clear videos that serve as an introduction to Deep Neural Networks.

In this course the programming assignments are coded and submitted in the browser using Jupyter notebooks, the coding language used is python and for the math the python library "numpy".

It is worth mentioning that some interviews with influential people on the field of DL are included and make the student fall in love with DL even more. Excited to see what's next in this specialization.

par Ged R

•7 sept. 2017

I completed the original ML course earlier this year which gave the fundamentals of the practice. What I got out of this course was a reinforcement of the practices and ways of collecting my thoughts. There was enough difference in the approach and especially in the back prop areas to help clarify the understanding from what was a bit of magic, to a clear and more structured set of calculations. The platform of using the notebook is very solid, and of course there is the usual outstanding support from the community with respect to answering questions

par 김찬

•15 oct. 2022

Perfect Deep Learning course for AI beginner!!!

For getting good score on your quiz and assignments, you should know some grammers of python and numpy.

However, it isn't impossible to perform tasks even though you are not quite good at using this skills thanks to the kind and detailed guides.

Through this course, I could finally understand the basic concepts and logics of deep learning mechanism and how to realize them through Python codes.

Of course, I gladly would like to put more efforts and time in taking other courses of Specialization.

Thank you!

par Chris M

•12 août 2019

Andrew NG's approach is one of its kind. Previously, I had taken several courses with other reputable online providers, and also did a lot of reading in tandem. What amazed me about Andrew's approach was the fact that crucial concepts were explained in much detail, one-by-one; this helped me complete the overall puzzle and/or fill in any missing links. I'm not sure if I could've followed the course without any previous experience, but if you're familiar with Python, NumPy and basic ML concepts, then this course will help you understand DL a lot better.

par Basil A

•22 août 2017

I think this course is very accessible, and gives you enough know how to hit the ground running. My only caution is that there is a bit of hand-holding involved (because of the limited background they assume), and that if you want a more rigorous foundation, you'll have to supplement this course with other materials. This doesn't detract from the quality of the course though, rather, it's amazing how much you can do with Deep Learning without fully understanding all of the finer details, and this is a good place to springboard into more advanced study.

par Sebastian S

•19 juin 2021

This is an excellent introductory course to Machine Learning and Neural Networks in particular. I've always wanted to know the nitty gritty details of how code of neural networks is written instead of using already developed third party packages. Thumbs up to the instructor and the entire team! My only comment is that the course suddenly changed when I was on week 4 and I lost all of my previous work for weeks 1-3. I wasn't notified of this change and I had to redo all this work. I got refunded for a month, but the redo work still took a lot of time.

par Eduard L

•31 oct. 2018

After a full course of Machine Learning, of course, this one is rather weak. The feeling that all 4 weeks we are talking about the same thing. This is probably done for those who are not at all in the subject. I see this course as an introduction to the specialization. I hope the continuation will be stronger. It's great that practical work is done in Jupiter on Python. Program exercises are easy, but it takes a lot of time to figure them out if we don't know Python very well. This is not a plus or a minus, just a statement of fact. Thank you Andrew!

par Bernard O

•21 oct. 2018

This was an amazing course for me. I've always wanted to get to the bottom of deep learning fundamentals and this course did not disappoint. It walks me through the basics to the more deeper concepts in incremental steps without overwhelming me with too much derivatives (but just enough to carry the point across). Just the right mix of theory and practice. Highly recommended as a starting point for deep learning, or if you're like me, developing more intuition towards the practice that I am already doing. Fills in the gaps in my understanding nicely.

par Steven K

•8 juil. 2018

A very nice introduction to deep learning. Covers the basics and builds up slowly. There is some prerequisite knowledge of Python programming and calculus to have success with the course. Professor Ng's explanation of the topic is focused on practical applications, and builds on years of experience gained in academia and industry. The exercises are focused on mastering core concepts. The notation takes a little bit of time to get accustomed to, but you begin to understand why the notation is the way it is. Very good course; I definitely recommend it.

par Romina s

•8 janv. 2018

A really good intuition and introduction to neural network and deep learning. What I enjoyed the most was the fact that we needed to implement the learning algorithm step by step through the guided programming assignments as opposed to calling an in built function in libraries ( such as tensorflow etc). I felt the programming exercises were quite very successful in an attempt to draw and maintain the learner focus on the algorithm itself as opposed to other programming aspects, which can be learnt elsewhere/improved elsewhere. Great course. Thank you

par Juan

•27 juin 2020

I like the practical focus of this course, it allows you to build the fundamental parts of simple tools that are gratifying for us beginners.

The instructor focuses on making sure he teaches only the core concepts and sometimes he does only explain some concepts at a very surface level, but I see this as more of a feature than a bug. Linear algebra and calculus concepts that are only briefly discussed in this course, deserve their own class or course; I like that is up to the student to decide whether to deeply research these subjects on his/her own.

par Ankur G

•12 nov. 2017

This course makes you implement your own neural network without using Tensorflow or Torch. As a result, the student gets to learn what neural networks are implemented internally instead of only learning how to use a particular software package. The course is full of small, practical, and highly useful information such as why we use a cross-entropy loss instead of sum of squared errors loss and why do we need to initialize parameters using not-too-large random weights. This information is very useful in implementing NNs at work or for job interviews.

par Wei L

•17 août 2017

It's a very good course. It illustrates the idea of neural network and deep learning in an intuitive way. I think this time I fully understand the idea and details behind them. Also, the python programming is very friendly. I have used R for years but not so familiar with python. However, folloing the instructions I can do the coding very efficiently. I think i just spent less than 1 week on this course but get 100% score on it. So it's not so challening compared to Machine Learning and PGM. I think PGM is the most difficult one among these courses.

par Dr. H K G

•24 mai 2020

Dear Prof. Andrew,

It is my pleasure to express gratitude and thankfulness to you and your team.

I am grateful to have you as a mentor in learning AI for everyone, neural networks and deep learning. It was a great journey with you in this learning process. Lectures and assignments made me realize the importance of the ANN and other advance tools in real world applications. The mathematical content behind neural network theory and programming assignments encouraged me to pursue this area in future.

Thank you once again.

Dr.Hari Krishna Gaddam, India

par Nicholas K

•7 nov. 2019

Overall, an excellent course! The material is taught very well. The programming assignments were enjoyable and fairly straightforward. The Jupyter programming notebooks were really cool and fun to work with.

The only criticism I have is that week 1 material was extremely easy, easily doable within a day. Week 2, on the other hand, was quite difficult. I think it was the most difficult week overall because it introduced a huge amount of new concepts and math. After I had a good understanding of week 2 material, the rest of the course was not so bad.

par Rohan S

•24 févr. 2019

This course is a masterpiece. Excellent for beginners and for those who want to refresh their memory. Andrew Ng's way of teaching neural networks with the simplicity of matrix multiplication deserves a standing ovation.

Course Content - 5/5; The material is extremely well structured.

Simplicity - 4/5; though the course requires basic calculus, it shouldn't be a problem

Assignments - 5/5; they were challenging, but it made sure that you grasp the concept completely.

Teaching - 5/5 - Excellent delivery by the master supplemented with easy explanations.

- Analyste de données Google
- Certificat Professionnel en marketing numérique et commerce électronique Google
- Certificat Professionnel d’automatisation informatique Google avec Python
- Google IT Support
- Gestion de projet Google
- Conception d'expérience utilisateur Google
- Préparation à la certification Google Cloud : architecte de Cloud
- Analyste de cybersécurité d'IBM
- Analyste de données d'IBM
- Ingénierie des données IBM
- Science des données IBM
- Développeur(euse) Cloud Full Stack IBM
- Apprentissage automatique IBM
- Connaître la comptabilité sur le bout des doigts
- Développeur front-end Meta
- Certification Professionnel de développeur TensorFlow DeepLearning.AI
- Certificat Professionnel de programmeur SAS
- Lancez votre carrière
- Préparez-vous pour obtenir un certificat
- Faire progresser votre carrière
- Comment identifier les erreurs de syntaxe Python
- Comment récupérer les exceptions Python
- Voir tous les tutoriels de programmation

- cours gratuits
- Cours sur l’intelligence artificielle
- Cours sur la blockchain
- Cours d’informatique
- Cursos Gratis
- Cours en cybersécurité
- Cours en analyse des données
- Cours de science des données
- Cours d’anglais
- Cours de développement Web Full Stack
- Cours Google
- Cours sur les ressources humaines
- Cours d’informatique
- Cours d’apprentissage de l’anglais
- Cours sur Microsoft Excel
- Cours en gestion de produit
- Cours en gestion de projet
- Cours sur Python
- Cours sur SQL
- Certifications Agile
- Certification CAPM
- Certification CompTIA A+
- Certifications en analyse des données
- Certifications Scrum Master
- Voir tous les cours

- Cours en ligne gratuits à terminer en une journée
- Cours appréciés gratuits
- Emplois dans le domaine commercial
- Emplois en cybersécurité
- Emplois en informatique pour débutant
- Questions pour un entretien avec un analyste de données
- Projets en analyse des données
- Comment devenir analyste de données
- Comment devenir chef de projet
- Compétences en informatique
- Questions pour un entretien avec un gestionnaire de projet
- Compétences de programmation en Python
- Forces et faiblesses lors d’un entretien
- Que fait un analyste de données ?
- Que fait un ingénieur logiciel ?
- Qu’est-ce qu’un ingénieur des données ?
- Qu’est-ce qu’un scientifique des données ?
- Qu’est-ce qu’un concepteur de produits ?
- Qu’est-ce qu’un Scrum Master ?
- Qu’est-ce qu’un UX Researcher (chercheur UX) ?
- Comment obtenir un certificat PMP
- Certifications PMI
- Certifications populaires en cybersécurité
- Certifications SQL populaires
- Lire tous les articles Coursera

- Certificats Professionnels Google
- Certificats Professionnels
- Voir tous les certificats
- Licences
- Masters
- Diplômes en informatique
- Diplômes en science des données
- MBA & diplômes commerciaux
- Diplômes en analyse des données
- Diplômes de santé publique
- Diplômes en sciences sociales
- Diplômes en gestion
- Licence en lettres ou licence en sciences
- Qu'est-ce qu'une licence ?
- 11 bonnes habitudes d’apprentissage à développer
- Comment écrire une lettre de recommandation
- 10 emplois convoités que vous pouvez obtenir avec un diplôme en commerce
- Est-ce qu’un Master en informatique est utile ?
- Voir tous les programmes diplômants
- Coursera Inde
- Coursera Royaume-Uni
- Coursera Mexique