Retour à Réseau de neurones et deep learning

étoiles

107,490 évaluations

•

21,454 avis

In the first course of the Deep Learning Specialization, you will study the foundational concept of neural networks and deep learning.
By the end, you will be familiar with the significant technological trends driving the rise of deep learning; build, train, and apply fully connected deep neural networks; implement efficient (vectorized) neural networks; identify key parameters in a neural network’s architecture; and apply deep learning to your own applications.
The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

WY

25 juin 2018

Really, really good course. Especially the tips of avoiding possible bugs due to shapes. Also impressed by the heroes' stories. Genuinely inspired and thoughtfully educated by Professor Ng. Thank you!

AJ

5 déc. 2020

This course helped me understand the basics of neural network. After this course I learned to built base neural network model. Looking forward to do the next course of the deeplearning specialization.

Filtrer par :

par Mohammad Z

•13 sept. 2018

This course is really great.The lectures are really easy to understand and grasp.The assignment instructions are really helpful and one does not need to know python before hand to complete the course.

par Aayush D K

•14 mai 2020

One of the best courses I have taken so far. The instructor has been very clear and precise throughout the course. The homework section is also designed in such a way that it helps the student learn .

par Zillur R

•4 janv. 2020

At first, I want to thank the course teacher and all the others for providing us such a wonderful course. The way the professor teaches is really very very helpful. Thank you all again and keep it up.

par Giovanni D C

•31 mai 2019

I have learnt a lot of tricks with numpy and I believe I have a better understanding of what a NN does. Now it does not look like a black box anymore. I look forward to see what's in the next courses!

par Shorahbeel B Z

•8 juin 2020

Amazing course for anyone wanting to jump in the field of deep learning. Andrew explains the details very well. The assignments were structured very good that provided detailed instructions. Thank you

par Johan W

•10 oct. 2017

Too slow, a lot of repeating facts, very little contents in total in the course, and nothing new compared to the old machine learning course which was more fun and much faster. Nice environment with python notebooks though!

par Aashi G

•1 juin 2020

It's really quite an amazing course where we get to learn the mathematics behind the Neural Networks. It is great to learn such core basics which will help us further in developing our own algorithms.

par Andrii T

•30 juin 2020

I think that this course went a little bit too much into needy greedy details of the math behind deep neural networks, but overall I think that it is a great place to start a journey in deep learning!

par Deven P

•13 mai 2019

This is really a very good introductory course for people from various background. The assignments are also nicely designed to give an insight to how things works.

But at times, in order to make this course appealing to non-math/engineering background, it at times trivializes some important mathematical concepts and notions, in order to not scare away people who are not very comfortable to mathematics.

par Juan A O G

•30 août 2018

TL;DR: It's a good course for people who are not familiar with neural nets. Otherwise, it feels kind of repetitive (I completed the course in 4 days)

Pros: Learn to implement efficient feedforward neural networks from scratch, by taking advantage of vectorized operations and caches; good understanding of how neural nets work and the reasons of their success; I loved how Dr. Andrew explained why we must initialize the weights to some small random numbers (I already knew neural nets before this course)

Cons: I expected to build neural nets in Tensorflow (after learning how to implement them from scratch); It'd have been good to include a gradient check (by computing the numerical gradient) to foolproof the backward pass; sometimes the explanations felt kind of repetitive (e.g. continuously going from one training example to the whole training batch). I would have just sticked to the batch learning after it was introduced

par Antoine C

•4 juin 2018

If you are already used to Python/numpy and you followed the free Machine Learning course from Ng, you really won't learn anything, apart from a new activation function.

par Parth S

•10 août 2018

Coding Exercise Were quite simple, a full length assignment would have been better.

par Niloufar Y

•11 janv. 2018

not satisfied

par David W

•16 oct. 2017

Great Presenter in Andrew Ng, on a topic of tremendous interest to very many.

However, unfortunately the grader seems to work only rarely in accepting submissions. Code that runs perfectly in the Notebook is repeatedly rejected by the Grader. Dozens of comments on these problems when the course opened two months ago. But still the problems have not been fixed!

And if you want to reset your Notebook for a fresh start , that may take hours or even days .

A pdf addressing exactly what one needs to do would be sensible. Instead one spends dozens of hours trawling round Forum discussions to guess what might actually work for the Grader. A most disappointing experience. Why is this considered in any way acceptable?

par Younes A

•7 déc. 2017

Wouldn't recommend because of the very low quality of the assignments, but I don't regret taking them because the content is great. Seriously the quality of deeplearning.ai courses is the lowest I have ever seen! Glitches in videos, wrong assignments (both notebooks and MCQs), and no valuable discussions on the forums. Too bad Prof Ng couldn't get a competent team to curate his content for him. For such an basic level of content, you will find many other courses that are far better.

par Ashkan A e A

•13 nov. 2018

Too easy

par Antonio C D

•19 janv. 2019

A good mix of theory and practice. The learning curve was perfect for me, and the course schedule is right if you study the material and work through the assignments in your spare time. Assignments are very well structured, I feel that trying to create the same implementations by myself (i.e. without the guides in the assignments and intermediate tests / check) would have taken 10x long.

par Nikhil D K

•12 mai 2019

This is a good review of the concepts. It helped even more once I finished the course and reflected on the material by working out the equations for back propagation by my own hand. Looking forward to the next course in the series.

par Jerry P

•2 févr. 2019

Excellent course. Challenging, but doable. Andrew Ng is a great teacher. I learned about logistic regression, forward and backward propagation, code vectorization with numpy, activation functions, and many other topics.

par Raihan G

•7 sept. 2020

I have learned a lot from this detailed and well-structured course. Programing assignments were very sophisticatedly designed. It was challenging, fun, and most importantly it delivered what is aimed.

par Nguyen H T

•18 janv. 2020

Very structured approach to developing a neural network which I believe I can use as foundation for any project regardless its complexity. Thanks professor Andrew Ng and the team for their dedication.

par Harsh T

•28 janv. 2019

The course is good and it helps to clear the basic concepts of Neural Networks,

And the interactive assignments are just Awesome

par Evert M

•28 juin 2020

The course is quite slow, but covers the basics of early deep neural networks (NNs). It does seems not to assume any prior knowledge on calculus, which is emphasised extensively, which sometimes leads to more confusion than that it is helpful. Before starting, some knowledge on python, numpy and linear algebra is highly recommended.

In the end you will have a basic understanding of what a NN is all about, and you will have built a photo-classifier. The course however, spends a lot of time explaining simpler concepts, while quickly glossing over the deeper stuff. Because of the elaborate explanation of simpler concepts, the big picture often gets lost. Furthermore, it seems like the videos, quizzes, and programming exercises were made by different people. The quizzes cover things not covered in the videos, and the programming assignments cover things not covered in either.

par Jorge E C

•15 oct. 2017

This course is good to just learn the terms and the basic aspects on architecture of deep learning. There is hardly any big explanations on the mathematical foundations of the topic which are of extreme importance to understand it.

It is a course for someone that dos not know much about neural networks or mathematics.

Is unfortunate that lead researcher in the area is able to say that it is not necesary to understand what a derivative is to be able to understand deep learning and the algorithm to update the weights of the network. I guess only for a first time course that is true, but I was expecting more from this course.

par nikcojeanian

•2 déc. 2017

Programming assignment is too simple

- Analyste de données Google
- Gestion de projet Google
- Conception d'expérience utilisateur Google
- Google IT Support
- Science des données IBM
- Analyste de données d'IBM
- Analyse des données IBM avec Excel et R
- Analyste de cybersécurité d'IBM
- Marketing appliqué au réseau social Facebook
- Développeur(euse) Cloud Full Stack IBM
- Sales Development Representative Salesforce
- Opérations de ventes Salesforce
- Soporte de Tecnologías de la Información de Google
- Certificado profesional de Suporte em TI do Google
- Automatisation informatique Google avec Python
- DeepLearning.AI Tensorflow
- Certifications populaires en cybersécurité
- Certifications SQL populaires
- Certifications populaires en informatique
- Voir tous les certificats

- cours gratuits
- Apprendre une langue
- python
- Java
- conception web
- SQL
- Cursos Gratis
- Microsoft Excel
- Gestion de projet
- Cybersécurité
- Ressources humaines
- Cours gratuits en Science de données
- parler anglais
- Rédaction de contenu
- Développement Web Full Stack
- Intelligence artificielle
- Programmation en C
- Compétences en communication
- Blockchain
- Voir tous les cours

- Compétences pour les équipes en charge de la science de données
- Prise de décisions basées sur les données
- Compétences en génie logiciel
- Compétences personnelles pour les équipes d'ingénieurs
- Compétences en gestion
- Compétences en marketing
- Compétences pour les équipes en charge des ventes
- Compétences en gestion de produits
- Compétences en finance
- Projets de développement Android
- Projets TensorFlow et Keras
- Le Python pour tous
- Deep Learning
- Compétences Excel pour l'entreprise
- Bases de la gestion d'entreprise
- Apprentissage automatique
- Principes de base d'AWS
- Fondements de l'ingénierie des données
- Compétences d'analyste de données
- Compétences pour un concepteur UX

- Certificats MasterTrack®
- Certificats Professionnels
- Certificats d'université
- MBA & diplômes commerciaux
- Diplômes en science des données
- Diplômes en informatique
- Diplômes en analyse des données
- Diplômes de santé publique
- Diplômes en sciences sociales
- Diplômes en gestion
- Diplômes des meilleures universités européennes
- Maîtrises
- Licences
- Diplôme avec un Parcours de performance
- Cours de BSc
- Qu'est-ce qu'une licence ?
- Combien de temps dure un Master ?
- Un MBA en ligne vaut-il le coup ?
- 7 façons de payer ses études supérieures
- Voir tous les diplômes