Chevron Left
Retour à Machine Learning: Regression

Avis et commentaires pour d'étudiants pour Machine Learning: Regression par Université de Washington

4.8
étoiles
5,503 évaluations

À propos du cours

Case Study - Predicting Housing Prices In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression. In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets. Learning Outcomes: By the end of this course, you will be able to: -Describe the input and output of a regression model. -Compare and contrast bias and variance when modeling data. -Estimate model parameters using optimization algorithms. -Tune parameters with cross validation. -Analyze the performance of the model. -Describe the notion of sparsity and how LASSO leads to sparse solutions. -Deploy methods to select between models. -Exploit the model to form predictions. -Build a regression model to predict prices using a housing dataset. -Implement these techniques in Python....

Meilleurs avis

PD

16 mars 2016

I really enjoyed all the concepts and implementations I did along this course....except during the Lasso module. I found this module harder than the others but very interesting as well. Great course!

KM

4 mai 2020

Excellent professor. Fundamentals and math are provided as well. Very good notebooks for the assignments...it’s just that turicreate library that caused some issues, however the course deserves a 5/5

Filtrer par :

1 - 25 sur 987 Avis pour Machine Learning: Regression

par Ernie M

25 sept. 2017

par Kelsey H

1 mars 2020

par Rohan G L

29 août 2020

par Pantelis H

7 avr. 2016

par Chase M

26 janv. 2016

par Ferenc F P

10 janv. 2018

par Gowtham A B

8 oct. 2020

par Leonardo D

28 oct. 2018

par Jafed E G

6 juil. 2019

par Konduri V

25 déc. 2018

par Pau D

17 mars 2016

par Jeyanthi T

11 août 2018

par Hiral P

9 oct. 2018

par Gabriele P

16 avr. 2019

par Robert K

14 août 2020

par Rajib D

5 sept. 2019

par Prasad B D

15 janv. 2016

par Theo L

5 janv. 2016

par Patrick M

1 févr. 2016

par Carlos D M

18 janv. 2016

par Havan A

13 mars 2016

par Phil B

29 janv. 2018

par David M

8 sept. 2017

par Sean S

18 févr. 2018

par Craig B

29 nov. 2016