Chevron Left
Retour à Machine Learning Foundations: A Case Study Approach

Avis et commentaires pour d'étudiants pour Machine Learning Foundations: A Case Study Approach par Université de Washington

4.6
étoiles
13,191 évaluations

À propos du cours

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....

Meilleurs avis

PM

18 août 2019

The course was well designed and delivered by all the trainers with the help of case study and great examples.

The forums and discussions were really useful and helpful while doing the assignments.

SZ

19 déc. 2016

Great course!

Emily and Carlos teach this class in a very interest way. They try to let student understand machine learning by some case study. That worked well on me. I like this course very much.

Filtrer par :

2726 - 2750 sur 3,056 Avis pour Machine Learning Foundations: A Case Study Approach

par Shikhar S

8 déc. 2020

par Wridheeman B

30 juin 2020

par Eric S

5 janv. 2016

par Mahajan P J

26 déc. 2019

par Richik G

11 juil. 2019

par Pieterjan C

2 oct. 2017

par Shreeti S

16 août 2017

par Waquar R

8 août 2016

par Vivek A

18 avr. 2016

par Fei F

22 déc. 2015

par TALHA J

30 août 2021

par Explore I

15 nov. 2019

par Binil K

10 janv. 2016

par Hiếu N Q

28 déc. 2015

par amit d

3 févr. 2020

par Arnab N

5 janv. 2020

par Rahul S

19 déc. 2020

par SURUTHI T

5 juil. 2020

par Oscar M

29 mai 2016

par Tulasi P D

15 juil. 2020

par Rohit K

17 avr. 2020

par shane

22 oct. 2015

par Rohit K S

30 sept. 2020

par Divyashree

14 sept. 2020

par SHAHID S

16 mai 2022