Chevron Left
Retour à Machine Learning: Clustering & Retrieval

Avis et commentaires pour d'étudiants pour Machine Learning: Clustering & Retrieval par Université de Washington

2,307 évaluations

À propos du cours

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python....

Meilleurs avis


24 août 2016

excellent material! It would be nice, however, to mention some reading material, books or articles, for those interested in the details and the theories behind the concepts presented in the course.


16 janv. 2017

Excellent course, well thought out lectures and problem sets. The programming assignments offer an appropriate amount of guidance that allows the students to work through the material on their own.

Filtrer par :

176 - 200 sur 381 Avis pour Machine Learning: Clustering & Retrieval

par Arash A

5 janv. 2017

par David F

21 oct. 2016

par Nitish V

29 oct. 2017

par Rahul G

13 juin 2017

par Stanislav B

15 avr. 2020

par Jason G

9 août 2017

par Krisda L

19 juil. 2017

par felix a f a

8 août 2016

par Feiwen C ( C I

1 juin 2017

par Kan C Y

19 mars 2017

par parag_verma

7 janv. 2020


27 déc. 2018

par Miao J

1 juil. 2016

par Veer A S

23 mars 2018

par Ted T

29 juil. 2017

par Dmitri T

4 déc. 2016

par Veera K R

6 avr. 2020

par Snehotosh K B

3 déc. 2016

par kripa s

30 avr. 2019

par Shuang D

29 juin 2018

par Garvish

14 juin 2017


21 sept. 2020

par Ce J

26 juin 2017

par 李紹弘

22 août 2017

par Nada M

11 juin 2017