Chevron Left
Retour à Bayesian Statistics: Techniques and Models

Avis et commentaires pour d'étudiants pour Bayesian Statistics: Techniques and Models par Université de Californie à Santa Cruz

449 évaluations

À propos du cours

This is the second of a two-course sequence introducing the fundamentals of Bayesian statistics. It builds on the course Bayesian Statistics: From Concept to Data Analysis, which introduces Bayesian methods through use of simple conjugate models. Real-world data often require more sophisticated models to reach realistic conclusions. This course aims to expand our “Bayesian toolbox” with more general models, and computational techniques to fit them. In particular, we will introduce Markov chain Monte Carlo (MCMC) methods, which allow sampling from posterior distributions that have no analytical solution. We will use the open-source, freely available software R (some experience is assumed, e.g., completing the previous course in R) and JAGS (no experience required). We will learn how to construct, fit, assess, and compare Bayesian statistical models to answer scientific questions involving continuous, binary, and count data. This course combines lecture videos, computer demonstrations, readings, exercises, and discussion boards to create an active learning experience. The lectures provide some of the basic mathematical development, explanations of the statistical modeling process, and a few basic modeling techniques commonly used by statisticians. Computer demonstrations provide concrete, practical walkthroughs. Completion of this course will give you access to a wide range of Bayesian analytical tools, customizable to your data....

Meilleurs avis


31 oct. 2017

This course is excellent! The material is very very interesting, the videos are of high quality and the quizzes and project really helps you getting it together. I really enjoyed it!!!


14 févr. 2021

The course was really interesting and the codes were easy to follow. Although I did take the previous course for this series, I still found it hard to grasp the concepts immediately.

Filtrer par :

126 - 147 sur 147 Avis pour Bayesian Statistics: Techniques and Models


25 déc. 2020

par Nancy L

11 oct. 2019

par Robert d J

16 mai 2022

par Owendrila S

28 sept. 2020


9 août 2020

par Md. R Q S

23 sept. 2020

par MD F K

27 août 2020

par clement c

13 déc. 2019

par Khoa M

1 oct. 2021

par Henk v E

25 sept. 2017

par Eddie G

21 janv. 2021

par Daniele M

11 févr. 2020

par Eric A S

12 janv. 2020

par Satish C S

13 oct. 2021

par Dziem N

22 juin 2020

par Stéphane M

25 févr. 2019


17 juil. 2020

par Vittorino M C

31 juil. 2020

par Maxim V

13 févr. 2020

par Leon K

28 janv. 2022

par Juan J G T

3 mai 2022

par Serum N

26 févr. 2020